13 resultados para GELS

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many challenges have been presented in petroleum industry. One of them is the preventing of fluids influx during drilling and cementing. Gas migration can occur as result of pressure imbalance inside the well when well pressure becomes lower than gas zone pressure and in cementing operation this occurs during cement slurry transition period (solid to fluid). In this work it was developed a methodology to evaluate gas migration during drilling and cementing operations. It was considered gel strength concept and through experimental tests determined gas migration initial time. A mechanistic model was developed to obtain equation that evaluates bubble displacement through the fluid while it gels. Being a time-dependant behavior, dynamic rheological measurements were made to evaluate viscosity along the time. For drilling fluids analyzed it was verified that it is desirable fast and non-progressive gelation in order to reduce gas migration without affect operational window (difference between pore and fracture pressure). For cement slurries analyzed, the most appropriate is that remains fluid for more time below critical gel strength, maintaining hydrostatic pressure above gas zone pressure, and after that gels quickly, reducing gas migration. The model developed simulates previously operational conditions and allow changes in operational and fluids design to obtain a safer condition for well construction

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Human Papillomavirus (HPV) infection is the major sexually transmitted disease all over the world. There are many factors associated to infection and the virus persistency in the organism. This study aims to evaluate the women's knowledge, attitudes and practice about the Papanicolaou test (Pap), as well as analyze the HPV and Chlamydia trachomatis infections prevalences in sexually active women from the city of São José do Mipibu/RN/Brazil. This research was divided in two steps (step I and step II), using different methodologies and samples each. The samples collected in each step, even socio-demographic or from uterus cervix, are from different patients e were analyzed separated. In step I was evaluated 267 rural and urban zone women s knowledge, attitudes and practices about the Pap by home interview. In the step II were included 605 women with age ranged from 15 to 71 years old, with mean of 33,5 years old and from each one were collected two cervical samples, one for Pap and other for molecular biology, beside the epidemiological interview to investigate the correlation between prevalence of HPV infection and risk factors. To molecular analyses, the samples were processed using a mammal rapid DNA extraction technique protocol. For C. trachomatis DNA detection were used the CP24/27 primers, and GP5+/GP6+ to HPV. PCR products were analyzed by electrophoresis on 8% polyacrylamide gels, followed by silver staining. The results of the step I showed that, in spite of only 46,1% of the interviewed women they have demonstrated to possess appropriate knowledge on the Pap test, the attitude and practice proportions were significantly larger, 63,3% and 64,4% respectively. The largest education degree presented association with adaptation of the knowledge, attitudes and practice, while neglect, lack of solicitation of the exam for the doctor and shame, came as main barriers for the accomplishment of the exam. In the stage II the HPV general prevalence was 28,9%, being 26,7% in the women with normal cytology or benign alterations, 26,7% in the ones that had atypical squamous cells of undetermined significance (ASC-US) and 80% in those with Low grade squamous intraepithelial lesion (LSIL). the HPV infection prevalence was larger in the patients with up to 30 years of age and in the unmarried women, and those that had more than one sexual partner presented larger infection risk. The results show that the sexual relationship with multiple partners increased the infection risk for HPV and consequently the possibility of the occurrence of lesions uterine cervix

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chitin and chitosan are nontoxic, biodegradable and biocompatible polymers produced by renewable natural sources with applications in diverse areas such as: agriculture, textile, pharmaceutical, cosmetics and biomaterials, such as gels, films and other polymeric membranes. Both have attracted greater interest of scientists and researchers as functional polymeric materials. In this context, the objective of this study was to take advantage of the waste of shrimp (Litopenaeus vannamei and Aristeus antennatus) and crabs (Ucides cordatus) from fairs, beach huts and restaurant in Natal/RN for the extraction of chitin and chitosan for the production of membranes by electrospinning process. The extraction was made through demineralization, deproteinization, deodorization and deacetylation. Morphological analyzes (SEM and XRD), Thermal analysis (TG and DTG), Spectroscopy in the Region of the Infrared with Transformed of Fourier (FTIR) analysis Calorimetry Differential Scanning (DSC) and mechanical tests for traction were performed. In (XRD) the semicrystalline structure of chitosan can be verified while the chitin had higher crystallinity. In the thermal analysis showed a dehydration process followed by decomposition, with similar behavior of carbonized material. Chitosan showed temperature of maximum degradation lower than chitin. In the analysis by Differential Scanning Calorimetry (DSC) the curves were coherent to the thermal events of the chitosan membranes. The results obtained with (DD) for chitosan extracted from Litopenaeus vannamei and Aristeus antennatus shrimp were (80.36 and 71.00%) and Ucides cordatus crabs was 74.65%. It can be observed that, with 70:30 solutions (v/v) (TFA/DCM), 60 and 90% CH3COOH, occurred better facilitate the formation of membranes, while 100:00 (v/v) (TFA/DCM) had formation of agglomerates. In relation to the monofilaments diameters of the chitosan membranes, it was noted that the capillary-collector distance of 10 cm and tensions of 25 and 30 kV contributed to the reduction of the diameters of membranes. It was found that the Young s modulus decreases with increasing concentration of chitosan in the membranes. 90% CH3COOH contributed to the increase in the deformation resulting in more flexible material. The membranes with 5% chitosan 70:30 (v/v) (TFA/DCM) had higher tensile strength

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sugarcane is one of the most important products of the world and Brazil is responsible for 25 % of the world production. One problem of this culture at northeast of Brazil is the early flowering. In our laboratory, it has been made before four subtractive libraries using early and late flowering genotypes in order to identify messages related to the flowering process. In this work, two cDNAs were chosen to make in silico analysis and overexpression constructs. Another approach to understand the flowering process in sugarcane was to use proteomic tools. First, the protocol for protein extraction using apical meristem was set up. After that, these proteins were separated on two bidimensional gels. It was possible to observe some difference for some regions of these gels as well as some proteins that can be found in all conditions. The next step, spots will be isolated and sequence on MS spectrometry in order to understand this physiological process in sugarcane

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Emissions of CO2 in the atmosphere have increased successively by various mechanisms caused by human action, especially as fossil fuel combustion and industrial chemical processes. This leads to the increase in average temperature in the atmosphere, which we call global warming. The search for new technologies to minimize environmental impacts arising from this phenomenon has been investigated. The capture of CO2 is one of the alternatives that can help reduce emis ions of greenhouse gases. The CO2 can be captured through the process of selective adsorption using adsorbents for this purpose. Were synthesized by hydrothermal method, materials of the type MCM-41 and Al-MCM-41 in the molar ratio Si / Al equal to 50. The synthesis of gels were prepared from a source of silicon, sodium, water and aluminum in the case of Al-MCM-41. The period of synthesis of the materials was 5 days in autoclave at 100°C. After that time materials were filtered, washed and dried in greenhouse at 100 º C for 4 hours and then calcined at 450 º C. Then the calcined material was functionalized with the Di-isopropylamine (DIPA) by the method of wet impregnation. We used 0.5 g of material mesopores to 3.5 mL of DIPA. The materials were functionalized in a closed container for 24 hours, and after this period were dried at brackground temperature for 2 hours. Were subsequently subjected to heat treatment at 250°C for 1 hour. These materials were used for the adsorption of CO2 and were characterized by XRD, FT-IR, BET / BJH, SEM, EDX and TG / DTG. Tests of adsorption of CO2 was carried out under the following conditions: 100 mg of adsorbent, temperature of 75°C under flow of 100 mL/min of CO2 for 2 hours. The desorption of CO2 was carried out by thermogravimetry from ambient temperature to 900ºC under flow of 25 mL min of He and a ratio of 10ºC/min. The difratogramas X-ray for the synthesized samples showed the characteristic peaks of MCM-41, showing that the structure of it was obtained. For samples functionalized there was a decrease of the intensities of these peaks, with a consequent reduction in the structural ordering of the material. However, the structure was preserved mesopores. The adsorption tests showed that the functionalized MCM-41 is presented as a material promising adsorbent, for CO2 capture, with a loss of mass on the desorption CO2 of 7,52%, while that in Al-MCM- 41 functionalized showed no such loss

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gels consist of soft materials with vast use in several activities, such as in pharmaceutical industry, food science, and coatings/textile applications. In order to obtain these materials, the process of gelification, that can be physical (based on physical interactions) and/or chemical (based on covalent crosslinking), has to be carried out. In this work we used dynamic light scattering (DLS) and rheometry to monitor the covalent gelification of chitosan solutions by glutaraldehyde. Intensity correlation function (ICF) data was obtained from DLS and the exponential stretched Kohrausch-William-Watts function (KWW) was fitted to them. The parameters of the KWW equation, β, Γ and C were evaluated. These methods were effective in clarifying the process of sol-gel transition, with the emergence of non-ergodicity, and determining the range of gelation observed in about 10-20 minutes. The dependence between apparent viscosity on reaction time was used to support the discussion proposed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Enzymatic synthesis of peptides using proteases has attracted a great deal of attention in recent years. One key challenge in peptide synthesis is to find supports for protease immobilization capable of working in aqueous medium at high performance, producing watersoluble oligopeptides. At present, few reports have been described using this strategy. Therefore, the aim of this thesis was to immobilize proteases applying different methods (Immobilization by covalent bound, entrapment onto polymeric gels of PVA and immobilization on glycidil metacrylate magnetic nanoparticles) in order to produce water-soluble oligopeptides derived from lysine. Three different proteases were used: trypsin, α-chymotrypsin and bromelain. According to immobilization strategies associated to the type of protease employed, trypsin-resin systems showed the best performance in terms of hydrolytic activity and oligopeptides synthesis. Hydrolytic activities of the free and immobilized enzymes were determined spectrophotometrically based on the absorbance change at 660 nm at 25 °C (Casein method). Calculations of oligolysine yield and average degree of polymerization (DPavg) were monitored by 1H-NMR analysis. Trypsin was covalently immobilized onto four different resins (Amberzyme, Eupergit C, Eupergit CM and Grace 192). Maximum yield of bound protein was 92 mg/g, 82 mg/g and 60 mg/g support for each resin respectively. The effectiveness of these systems (Trypsin-resins) was evaluated by hydrolysis of casein and synthesis of water-soluble oligolysine. Most systems were capable of catalyzing oligopeptide synthesis in aqueous medium, albeit at different efficiencies, namely: 40, 37 and 35% for Amberzyme, Eupergit C and Eupergit CM, respectively, in comparison with free enzyme. These systems produced oligomers in only 1 hour with DPavg higher than free enzyme. Among these systems, the Eupergit C-Trypsin system showed greater efficiency than others in terms of hydrolytic activity and thermal stability. However, this did not occur for oligolysine synthesis. Trypsin-Amberzyme proved to be more successful in oligopeptide synthesis, and exhibited excellent reusability, since it retained 90% of its initial hydrolytic and synthetic activity after 7 reuses. Trypsin hydrophobic interactions with Amberzyme support are responsible for protecting against strong enzyme conformational changes in the medium. In addition, the high concentration of oxirane groups on the surface promoted multi-covalent linking and, consequently, prevented the immobilized enzyme from leaching. The aforementioned results suggest that immobilized Trypsin on the supports evaluated can be efficiently used for oligopeptides synthesis in aqueous media

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work reports the synthesis of zeolites with different compositions (pure silica, Si/Ti and Si/Al), via hydroxide and fluoride medium using the cation 1-butyl-3- methylimidazolium as structure directing agent. Initially, the cation was synthesized in chloride form and used for the synthesis in hydroxide medium. An anion-exchange (Cl- for OH-) was required for the synthesis in fluoride medium. Different reactants were used for the formation of gels synthesis, resulting in the crystallization of MFI and TON phases, the latter predominant in many compositions. The cation and synthesized zeolites obtained were characterized by different techniques such as NMR, TG/DTG, XRD, SEM, N2 adsorption and desorption, DRS and EPMA. Besides characterizing the cation and zeolites, the mother liquor of hydroxide synthesis was characterized and it was possible to observe a modification of the cation in the synthesis conditions employed. The materials synthesized in this work can be applied in catalytic reactions and adsorption

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Drilling fluids have fundamental importance in the petroleum activities, since they are responsible for remove the cuttings, maintain pressure and well stability, preventing collapse and inflow of fluid into the rock formation and maintain lubrication and cooling the drill. There are basically three types of drilling fluids: water-based, non-aqueous and aerated based. The water-based drilling fluid is widely used because it is less aggressive to the environment and provide excellent stability and inhibition (when the water based drilling fluid is a inhibition fluid), among other qualities. Produced water is generated simultaneously with oil during production and has high concentrations of metals and contaminants, so it’s necessary to treat for disposal this water. The produced water from the fields of Urucu-AM and Riacho da forquilha-RN have high concentrations of contaminants, metals and salts such as calcium and magnesium, complicating their treatment and disposal. Thus, the objective was to analyze the use of synthetic produced water with similar characteristics of produced water from Urucu-AM and Riacho da Forquilha-RN for formulate a water-based drilling mud, noting the influence of varying the concentration of calcium and magnesium into filtered and rheology tests. We conducted a simple 32 factorial experimental design for statistical modeling of data. The results showed that the varying concentrations of calcium and magnesium did not influence the rheology of the fluid, where in the plastic viscosity, apparent viscosity and the initial and final gels does not varied significantly. For the filtrate tests, calcium concentration in a linear fashion influenced chloride concentration, where when we have a higher concentration of calcium we have a higher the concentration of chloride in the filtrate. For the Urucu’s produced water based fluids, volume of filtrate was observed that the calcium concentration influences quadratically, this means that high calcium concentrations interfere with the power of the inhibitors used in the formulation of the filtered fluid. For Riacho’s produced water based fluid, Calcium’s influences is linear for volume of filtrate. The magnesium concentration was significant only for chloride concentration in a quadratic way just for Urucu’s produced water based fluids. The mud with maximum concentration of magnesium (9,411g/L), but minimal concentration of calcium (0,733g/L) showed good results. Therefore, a maximum water produced by magnesium concentration of 9,411g/L and the maximum calcium concentration of 0,733g/L can be used for formulating water-based drilling fluids, providing appropriate properties for this kind of fluid.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Produced water is considered the main effluent of the oil industry, due to their increased volume in mature fields and its varied composition. The oil and grease content (TOG) is the main parameter for the final disposal of produced water. In this context, it is of great significance to develop an alternative method based on guar gum gel for the treatment of synthetic produced water, and using as the differential a polymer having high hydrophilicity for clarifying waters contaminated with oil. Thus, this study aims to evaluate the efficiency of guar gum gels in the remotion of oil from produced water. Guar gum is a natural polymer that, under specific conditions, forms three-dimensional structures, with important physical and chemical properties. By crosslinking the polymer chains by borate ions in the presence of salts, the effect salting out occurs, reducing the solubility of the polymer gel in water. As a result, there is phase separation with the oil trapped in the collapsed gel. The TOG was quantified from the spectroscopy in the ultraviolet and visible region. The system was proven to be highly efficient in the removal of dispersed oil from water produced synthetically, reaching removal percentages above 90%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The advance of drilling in deeper wells has required more thermostable materials. The use of synthetic fluids, which usually have a good chemical stability, faces the environmental constraints, besides it usually generate more discharge and require a costly disposal treatment of drilled cuttings, which are often not efficient and require mechanical components that hinder the operation. The adoption of aqueous fluids generally involves the use of chrome lignosulfonate, used as dispersant, which provides stability on rheological properties and fluid loss under high temperatures and pressures (HTHP). However, due to the environmental impact associated with the use of chrome compounds, the drilling industry needs alternatives that maintain the integrity of the property and ensure success of the operation in view of the strong influence of temperature on the viscosity of aqueous fluids and polymers used in these type fluids, often polysaccharides, passives of hydrolysis and biological degradation. Therefore, vinyl polymers were selected for this study because they have predominantly carbon chain and, in particular, polyvinylpyrrolidone (PVP) for resisting higher temperatures and partially hydrolyzed polyacrylamide (PHPA) and clay by increasing the system's viscosity. Moreover, the absence of acetal bonds reduces the sensitivity to attacks by bacteria. In order to develop an aqueous drilling fluid system for HTHP applications using PVP, HPAM and clay, as main constituents, fluid formulations were prepared and determined its rheological properties using rotary viscometer of the Fann, and volume filtrate obtained by filtration HTHP following the standard API 13B-2. The new fluid system using polyvinylpyrrolidone (PVP) with high molar weight had higher viscosities, gels and yield strength, due to the effect of flocculating clay. On the other hand, the low molecular weight PVP contributed to the formation of disperse systems with lower values in the rheological properties and fluid loss. Both systems are characterized by thermal stability gain up to around 120 ° C, keeping stable rheological parameters. The results were further corroborated through linear clay swelling tests.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The advance of drilling in deeper wells has required more thermostable materials. The use of synthetic fluids, which usually have a good chemical stability, faces the environmental constraints, besides it usually generate more discharge and require a costly disposal treatment of drilled cuttings, which are often not efficient and require mechanical components that hinder the operation. The adoption of aqueous fluids generally involves the use of chrome lignosulfonate, used as dispersant, which provides stability on rheological properties and fluid loss under high temperatures and pressures (HTHP). However, due to the environmental impact associated with the use of chrome compounds, the drilling industry needs alternatives that maintain the integrity of the property and ensure success of the operation in view of the strong influence of temperature on the viscosity of aqueous fluids and polymers used in these type fluids, often polysaccharides, passives of hydrolysis and biological degradation. Therefore, vinyl polymers were selected for this study because they have predominantly carbon chain and, in particular, polyvinylpyrrolidone (PVP) for resisting higher temperatures and partially hydrolyzed polyacrylamide (PHPA) and clay by increasing the system's viscosity. Moreover, the absence of acetal bonds reduces the sensitivity to attacks by bacteria. In order to develop an aqueous drilling fluid system for HTHP applications using PVP, HPAM and clay, as main constituents, fluid formulations were prepared and determined its rheological properties using rotary viscometer of the Fann, and volume filtrate obtained by filtration HTHP following the standard API 13B-2. The new fluid system using polyvinylpyrrolidone (PVP) with high molar weight had higher viscosities, gels and yield strength, due to the effect of flocculating clay. On the other hand, the low molecular weight PVP contributed to the formation of disperse systems with lower values in the rheological properties and fluid loss. Both systems are characterized by thermal stability gain up to around 120 ° C, keeping stable rheological parameters. The results were further corroborated through linear clay swelling tests.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Marine algae are rich sources of various structural compounds which recently has been increasingly studied as a new source of bioactive substances. The alginate, as come as fucans, are considered the main acidic polysaccharides found in brown seaweed. This molecule consists a linear natural polysaccharide, non-sulfated, and presents monosaccharides: acid β-D-mannuronic (M) and α-L-guluronic acid (G); in a vast amount compositions and threads. Alginate has been widely applied in food and pharmaceutical industries because of its ability to retain water, forming films and gels as well as thickening, stabilizing and form emulsions. In this work we aimed to extract, structurally characterize, compare and analyze the possible pharmacological activities of native alginate molecule obtained from brown seaweed Dyctiopteris delicatula (DYN), and its chemically sulfated derivative (DYS). The alginate structure and composition molecule can be proven through chemical dosing, that showed low protein contamination and high sugar level, existence and separation of M and G blocks in the descending paper chromatography, infrared spectroscopy and nuclear magnetic resonance. Molecule sulfation was proven with sulphate dosage, resulting in 28.56% sulphate in molecule; electrophoresis, verify metachromasia with toluidine blue; and infrared spectroscopy, that showed a characteristic band at 1221cm-1 corresponding a sulfate group vibration. For the pharmacological activities the tests was: antioxidant activity, changes in cell function (MTT test) and anticoagulant test. In the antioxidant activity we observed that DYN showed better results in the kidnapping of hydroxyl radicals and ferric chelation compared to DYS, this had the best result in the total antioxidant capacity. Both showed similar activity in reducing power and the kidnapping radicals DPPH. In MTT test DYN and DYS had not proliferative and cytotoxic activity in fibroblast cells (3T3) and showed antiproliferative and cytotoxic activity in cancer cell lines HeLa and B16 melanoma. In anticoagulant assay DYN showed good activity in the intrinsic pathway of blood coagulation, and a small activity in the extrinsic pathway, in the other hand DYS showed only a very small activity in the extrinsic pathway, but cannot come to be regarded as an anticoagulant agent. From these results it can be concluded that the alginate was extracted and sulfated, revealing a potential compound to be used in the pharmaceutical industry as an anticoagulant agent, antioxidant and antitumor and the sulfation has not been conclusively important to performance in the tested pharmacological activities