47 resultados para Fuels.

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The consumption of energy on the planet is currently based on fossil fuels. They are responsible for adverse effects on the environment. Renewables propose solutions for this scenario, but must face issues related to the capacity of the power supply. Wind energy offshore emerging as a promising alternative. The speed and stability are greater winds over oceans, but the variability of these may cause inconvenience to the generation of electric power fluctuations. To reduce this, a combination of wind farms geographically distributed was proposed. The greater the distance between them, the lower the correlation between the wind velocity, increasing the likelihood that together achieve more stable power system with less fluctuations in power generation. The efficient use of production capacity of the wind park however, depends on their distribution in marine environments. The objective of this research was to analyze the optimal allocation of wind farms offshore on the east coast of the U.S. by Modern Portfolio Theory. The Modern Portfolio Theory was used so that the process of building portfolios of wind energy offshore contemplate the particularity of intermittency of wind, through calculations of return and risk of the production of wind farms. The research was conducted with 25.934 observations of energy produced by wind farms 11 hypothetical offshore, from the installation of 01 simulated ocean turbine with a capacity of 5 MW. The data show hourly time resolution and covers the period between January 1, 1998 until December 31, 2002. Through the Matlab R software, six were calculated minimum variance portfolios, each for a period of time distinct. Given the inequality of the variability of wind over time, set up four strategies rebalancing to evaluate the performance of the related portfolios, which enabled us to identify the most beneficial to the stability of the wind energy production offshore. The results showed that the production of wind energy for 1998, 1999, 2000 and 2001 should be considered by the portfolio weights calculated for the same periods, respectively. Energy data for 2002 should use the weights derived from the portfolio calculated in the previous time period. Finally, the production of wind energy in the period 1998-2002 should also be weighted by 1/11. It follows therefore that the portfolios found failed to show reduced levels of variability when compared to the individual production of wind farms hypothetical offshore

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development and study of detectors sensitive to flammable combustible and toxic gases at low cost is a crucial technology challenge to enable marketable versions to the market in general. Solid state sensors are attractive for commercial purposes by the strength and lifetime, because it isn t consumed in the reaction with the gas. In parallel, the use of synthesis techniques more viable for the applicability on an industrial scale are more attractive to produce commercial products. In this context ceramics with spinel structure were obtained by microwave-assisted combustion for application to flammable fuel gas detectors. Additionally, alternatives organic-reducers were employed to study the influence of those in the synthesis process and the differences in performance and properties of the powders obtained. The organic- reducers were characterized by Thermogravimetry (TG) and Derivative Thermogravimetry (DTG). After synthesis, the samples were heat treated and characterized by Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), analysis by specific area by BET Method and Scanning Electron Microscopy (SEM). Quantification of phases and structural parameters were carried through Rietveld method. The methodology was effective to obtain Ni-Mn mixed oxides. The fuels influenced in obtaining spinel phase and morphology of the samples, however samples calcined at 950 °C there is just the spinel phase in the material regardless of the organic-reducer. Therefore, differences in performance are expected in technological applications when sample equal in phase but with different morphologies are tested

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The field of "Materials Chemistry" has been developing in recent years and there has been a great increase of interest in the synthesis and chemical and physical properties of new inorganic solids. New routes of synthesis and synthesis modified has been developed with the aim not only to optimize the processes in laboratory scale, but also on an industrial scale, and make them acceptable by current environmental legislation. The phenomenology of current solid state chemistry properties coupled with the high temperature superconductivity, ferromagnetism, porosity molecular and colors are evidence affected by the synthesis method, which in turn can influence the technological application of these materials. From this understanding, mixed oxides of nickel and zinc nanoparticulate were synthesized by microwave-assisted combustion route using three specific types of organic fuels employing the weight ratios 1:1/2 and 1:1 of cation metallic/fuel, in order to investigate the influence of such proportions to obtain the solids. The new fuels were chosen to replace, for example, urea or glycine that are the fuels most commonly preferred in this kind of synthesis. The powders without heat treatment were studied by Thermogravimetric analysis (TGA), X-Ray Diffraction (XRD) and then calcined at 900°C. After heat treatment, the samples were characterized by analysis of X Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). The modified synthesis route porposed was effective for obtaining powders. Both the alternative fuels chosen as the different weight ratios employed, influenced in the morphology and obtaining oxides

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fuel cells are electrochemical devices that convert chemical energy into electricity. Due to the development of new materials, fuel cells are emerging as generating clean energy generator. Among the types of fuel cells, categorized according to the electrode type, the solid oxide fuel cells (SOFC) stand out due to be the only device entirely made of solid particles. Beyond that, their operation temperature is relatively high (between 500 and 1000 °C), allowing them to operate with high efficiency. Another aspect that promotes the use of SOFC over other cells is their ability to operate with different fuels. The CeO2 based materials doped with rare earth (TR+3) may be used as alternatives to traditional NiO-YSZ anodes as they have higher ionic conductivity and smaller ohmic losses compared to YSZ, and can operate at lower temperatures (500-800°C). In the composition of the anode, the concentration of NiO, acting as a catalyst in YSZ provides high electrical conductivity and high electrochemical activity of reactions, providing internal reform in the cell. In this work compounds of NiO - Ce1-xEuxO2-δ (x = 0.1, 0.2 and 0.3) were synthesized from polymeric precursor, Pechini, method of combustion and also by microwave-assisted hydrothermal method. The materials were characterized by the techniques of TG, TPR, XRD and FEG-SEM. The refinement of data obtained by X-ray diffraction showed that all powders of NiO - Cex-1EuxO2-δ crystallized in a cubic phase with fluorite structure, and also the presence of Ni. Through the characterizations can be proved that all routes of preparation used were effective for producing ceramics with characteristics suitable for application as SOFC anodes, but the microwave-assisted hydrothermal method showed a significant reduction in the average grain size and improved control of the compositions of the phases

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the new discoveries of oil and gas, the exploration of fields in various geological basins, imports of other oils and the development of alternative fuels, more and more research labs have evaluated and characterized new types of petroleum and derivatives. Therefore the investment in new techniques and equipment in the samples analysis to determine their physical and chemical properties, their composition, possible contaminants, especification of products, among others, have multiplied in last years, so development of techniques for rapid and efficient characterization is extremely important for a better economic recovery of oil. Based on this context, this work has two main objectives. The first one is to characterize the oil by thermogravimetry coupled with mass spectrometry (TG-MS), and correlate these results with from other types of characterizations data previously informed. The second is to use the technique to develop a methodology to obtain the curve of evaluation of hydrogen sulfide gas in oil. Thus, four samples were analyzed by TG-MS, and X-ray fluorescence spectrometry (XRF). TG results can be used to indicate the nature of oil, its tendency in coke formation, temperatures of distillation and cracking, and other features. It was observed in MS evaluations the behavior of oil main compounds with temperature, the points where the volatilized certain fractions and the evaluation gas analysis of sulfide hydrogen that is compared with the evaluation curve obtained by Petrobras with another methodology

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biomass is considered the largest renewable energy source that can be used in an environmentally sustainable. From the pyrolysis of biomass is possible to obtain products with higher energy density and better use properties. The liquid resultant of this process is traditionally called bio-oil. The use of infrared burners in industrial applications has many advantages in terms of technical-operational, for example, uniformity in the heat supply in the form of radiation and convection, with a greater control of emissions due to the passage of exhaust gases through a macroporous ceramic bed. This paper presents a commercial infrared burner adapted with an ejector proposed able to burn a hybrid configuration of liquefied petroleum gas (LPG) and bio-oil diluted. The dilution of bio-oil with absolute ethanol aimed to decrease the viscosity of the fluid, and improving the stability and atomization. It was introduced a temperature controller with thermocouple modulating two stages (low heat / high heat), and solenoid valves for fuels supply. The infrared burner has been tested, being the diluted bio-oil atomized, and evaluated its performance by conducting energy balance. The method of thermodynamic analysis to estimate the load was used an aluminum plate located at the exit of combustion gases and the distribution of temperatures measured by thermocouples. The dilution reduced the viscosity of the bio-oil in 75.4% and increased by 11% the lower heating value (LHV) of the same, providing a stable combustion to the burner through the atomizing with compressed air and burns combined with LPG. Injecting the hybrid fuel there was increase in the heat transfer from the plate to the environment in 21.6% and gain useful benefit of 26.7%, due to the improved in the efficiency of the 1st Law of Thermodynamics of infrared burner

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Estuaries are environments prone to the input of chemical pollutants of various kinds and origins, including polycyclic aromatic hydrocarbons (PAHs). Anthropogenic PAHs may have two possible sources: pyrolytic (with four or more aromatic rings and low degree of alkylation) and petrogenic (with two and three aromatic rings and high degree of alkylation). This study aimed to evaluate the levels, distribution and possible sources of polycyclic aromatic hydrocarbons in the estuary of the Potengi river, Natal, Brazil. Samples of bottom sediments were collected in the final 12 km of the estuary until its mouth to the sea, where the urbanization of the Great Natal is more concentrated. Sampling was performed on 12 cross sections, with three stations each, totaling 36 samples, identified as T1 to T36. The non alkylated and alkylated PAHs were analyzed by gas chromatography coupled to mass spectrometry (GC / MS). PAHs were detected in all 36 stations with total concentration on each varying 174-109407 ng g-1. These values are comparable to those of several estuarine regions worldwide with high anthropogenic influence, suggesting the record of diffuse contamination installed in the estuary. PAHs profiles were similar for most stations. In 32 of the 36 stations, low molecular weight PAHs (with 2 and 3 ring: naphthalene, phenanthrene and their alkylated homologues) prevailed, which ranged from 54% to 100% of the total PAH, indicating that leaks, spills and combustion fuels are the dominant source of PAH pollution in the estuary. The level of contamination by PAHs in most stations suggests that there is potential risk of occasional adverse biological effects, but in some stations adverse impacts on the biota may occur frequently. The diagnostic ratios could differentiate sources of PAHs in sediments of the estuary, which were divided into three groups: petrogenic, pyrolytic and mixing of sources. The urban concentration of the Great Natal and the various industrial activities associated with it can be blamed as potential sources of PAHs in bottom sediments of the estuary studied. The data presented highlight the need to control the causes of existing pollution in the estuary

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Efforts in research and development of new technologies to reduce emission levels of pollutant gases in the atmosphere has intensified in the last decades. In this context, it can be highlighted the modern systems of electronic engine management, new automotive catalysts and the use of renewable fuels which contributes to reduce the environmental impact. The purpose of this study was a comparative analysis of gas emissions from a automotive vehicle, operating with different fuels: natural gas, AEHC or gasoline. To execute the experimental tests, a flex vehicle was installed on a chassis dynamometer equipped with a gas analyzer and other complementary accessories according to the standard guidelines of emission and security procedures. Tests were performed according to NBR 6601 and NBR 7024, which define the urban and road driving cycle, respectively. Besides the analysis of exhaust gases in the discharge tube, before and after the catalyst, using the suction probe of the gas analyzer to simulate the vehicle in urban and road traffic, were performed tests of fuel characterization. Final results were conclusive in indicating leaded gasoline as the fuel which most contributed with pollutant emissions in atmosphere and the usual gasoline being the fuel which less contributed with pollutant emissions in atmosphere

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The growing world demand for energy supplied by fossil fuels, a major contributor to the emission of pollutants into the atmosphere and causing environmental problems, has been encouraging governments and international organizations to reflect and encourage the use of alternative renewable sources. Among these new possibilities deserves attention biodiesel, fuel cleaner and easy to reproduce. The study of new technologies involving that source is necessary. From this context, the paper aims at analyzing the thermal stability by thermogravimetric analysis, of the waste generated from atmospheric distillation of mixtures with ratios of 5, 10, 15 and 20% palm biodiesel in diesel with and without addition of BHT antioxidant. It was synthesized biodiesel through palm oil, via homogeneous catalysis in the presence of KOH, with and without the use of BHT and subsequently added to the diesel common indoor type (S1800) from a gas station BR. The diesel was already added with 5% biodiesel, and thus the proportions used for these blends were subtracted from the existing ratio in diesel fuel, resulting in the following proportions palm oil biodiesel: 0% (B5), 5% (B10), 10 % (B15) and 15% (B20). From atmospheric distillation analysis, performed in mixtures with and without BHT were collected residue generated by each sample and performed a thermal study from the thermogravimetric analysis at a heating rate of 10 °C.min-1, nitrogen atmosphere and heating to 600 ° C. According to the specifications of Resolution No. 7/2008 for biodiesel, it was found that the material was synthesized in accordance with the specifications. For mixtures, it was noted that the samples were in accordance with the ANP Resolution No. 42/2009. Given the TG / DTG curves of the samples of waste mixtures with and without BHT antioxidant was able to observe that they showed a single stage of thermal decomposition attributed to decomposition of heavy hydrocarbons and esters and other heavier constituents of the waste sample weighed. The thermal behavior of residues from atmospheric distillation of mixtures of diesel / biodiesel is very important to understand how this affects the proper functioning of the engine. A large amount of waste can generate a high content of particulate material, coke formation and carbonaceous deposits in engine valves, compromising their performance

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The demand for alternative sources of energy drives the technological development so that many fuels and energy conversion processes before judged as inadequate or even non-viable, are now competing fuels and so-called traditional processes. Thus, biomass plays an important role and is considered one of the sources of renewable energy most important of our planet. Biomass accounts for 29.2% of all renewable energy sources. The share of biomass energy from Brazil in the OIE is 13.6%, well above the world average of participation. Various types of pyrolysis processes have been studied in recent years, highlighting the process of fast pyrolysis of biomass to obtain bio-oil. The continuous fast pyrolysis, the most investigated and improved are the fluidized bed and ablative, but is being studied and developed other types in order to obtain Bio-oil a better quality, higher productivity, lower energy consumption, increased stability and process reliability and lower production cost. The stability of the product bio-oil is fundamental to designing consumer devices such as burners, engines and turbines. This study was motivated to produce Bio-oil, through the conversion of plant biomass or the use of its industrial and agricultural waste, presenting an alternative proposal for thermochemical pyrolysis process, taking advantage of particle dynamics in the rotating bed that favors the right gas-solid contact and heat transfer and mass. The pyrolyser designed to operate in a continuous process, a feeder containing two stages, a divisive system of biomass integrated with a tab of coal fines and a system of condensing steam pyrolytic. The prototype has been tested with sawdust, using a complete experimental design on two levels to investigate the sensitivity of factors: the process temperature, gas flow drag and spin speed compared to the mass yield of bio-oil. The best result was obtained in the condition of 570 oC, 25 Hz and 200 cm3/min, temperature being the parameter of greatest significance. The mass balance of the elementary stages presented in the order of 20% and 37% liquid pyrolytic carbon. We determined the properties of liquid and solid products of pyrolysis as density, viscosity, pH, PCI, and the composition characterized by chemical analysis, revealing the composition and properties of a Bio-oil.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Activities that have fuel subterranean storage system are considered potentially polluting fuels by CONAMA Resolution 273, due to the possibility of leak, outpouring and overflow of fuel into the ground. Being even more worrying when contaminate groundwater for public supply, as the case of Natal City. For this reason, the Public Ministry/RN, in partnership with UFRN, developed the project environmental suitability of Gas stations in Natal, of which 36% showed evidence of contamination. This paper describes the four stages of the management of contaminated areas: preliminary assessment of environmental liabilities, detailed confirmatory investigation of the contamination, risk analysis to human health (RBCA), as well as the remediation plan of degraded areas. Therefore it is presented a case study. For the area investigated has been proposed a mathematical method to estimate the volume of LNAPL by a free CAD software (ScketchUp) and compare it with the partition method for grid area. Were also performed 3D graphics designs of feathers contamination. Research results showed that passive benzene contamination in groundwater was 2791.77 μg/L, when the maximum allowed by CONAMA Resolution 420 is 5 μg/L which is the potability standards. The individual and cumulative risks were calculated from 4.4 x10-3, both above the limits of 1.0 x10-5 or by RBCA 1.0 x10-6 by the Public Ministry/RN. Corrective action points that remediation of dissolved phase benzene is expected to reach a concentration of 25 μg/L, based on carcinogenic risk for ingestion of groundwater by residents residential, diverging legislation. According to the proposed model, the volume of LNAPL using the ScketchUp was 17.59 m3, while by the grid partitioning method was 14.02 m3. Because of the low recovery, the expected removal of LNAPL is 11 years, if the multiphase extraction system installed in the enterprise is not optimized

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The increasing use of fossil fuels in line with cities demographic explosion carries out to huge environmental impact in society. For mitigate these social impacts, regulatory requirements have positively influenced the environmental consciousness of society, as well as, the strategic behavior of businesses. Along with this environmental awareness, the regulatory organs have conquered and formulated new laws to control potentially polluting activities, mostly in the gas stations sector. Seeking for increasing market competitiveness, this sector needs to quickly respond to internal and external pressures, adapting to the new standards required in a strategic way to get the Green Badge . Gas stations have incorporated new strategies to attract and retain new customers whom present increasingly social demand. In the social dimension, these projects help the local economy by generating jobs and income distribution. In this survey, the present research aims to align the social, economic and environmental dimensions to set the sustainable performance indicators at Gas Stations sector in the city of Natal/RN. The Sustainable Balanced Scorecard (SBSC) framework was create with a set of indicators for mapping the production process of gas stations. This mapping aimed at identifying operational inefficiencies through multidimensional indicators. To carry out this research, was developed a system for evaluating the sustainability performance with application of Data Envelopment Analysis (DEA) through a quantitative method approach to detect system s efficiency level. In order to understand the systemic complexity, sub organizational processes were analyzed by the technique Network Data Envelopment Analysis (NDEA) figuring their micro activities to identify and diagnose the real causes of overall inefficiency. The sample size comprised 33 Gas stations and the conceptual model included 15 indicators distributed in the three dimensions of sustainability: social, environmental and economic. These three dimensions were measured by means of classical models DEA-CCR input oriented. To unify performance score of individual dimensions, was designed a unique grouping index based upon two means: arithmetic and weighted. After this, another analysis was performed to measure the four perspectives of SBSC: learning and growth, internal processes, customers, and financial, unifying, by averaging the performance scores. NDEA results showed that no company was assessed with excellence in sustainability performance. Some NDEA higher efficiency Gas Stations proved to be inefficient under certain perspectives of SBSC. In the sequence, a comparative sustainable performance and assessment analyzes among the gas station was done, enabling entrepreneurs evaluate their performance in the market competitors. Diagnoses were also obtained to support the decision making of entrepreneurs in improving the management of organizational resources and promote guidelines the regulators. Finally, the average index of sustainable performance was 69.42%, representing the efforts of the environmental suitability of the Gas station. This results point out a significant awareness of this segment, but it still needs further action to enhance sustainability in the long term

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Industrial activities, oil spills and its derivatives, as well as the incomplete combustion of fossil fuels have caused a great accumulation of hydrocarbons in the environment. The number of microorganisms on the planet is estimated at 1030 and prokaryotes the most abundant. They colonized diverse environments for thousands of years, including those considered extreme and represent an untapped source of metabolic and genetic diversity with a large biotechnological potential. It is also known that certain microorganisms have the enzymatic capacity to degrade petroleum hydrocarbons and, in many ecosystems, there is an indigenous community capable of performing this function. The metagenomic has revolutionized the microbiology allowing access uncultured microbial communities, being a powerful tool for elucidation of their ecological functions and metabolic profiles, as well as for identification of new biomolecules. Thus, this study applied metagenomic approaches not only for functional selection of genes involved in biodegradation and emulsification processes of the petroleum-derived hydrocarbons, but also to describe the taxonomic and metabolic composition of two metagenomes from aquatic microbiome. We analyzed 123.116 (365 ± 118 bp) and 127.563 sequences (352 ± 120 bp) of marine and estuarine metagenomes, respectively. Eight clones were found, four involved in the petroleum biodegradation and four were able to emulsify kerosene indicating their abilities in biosurfactants synthesis. Therefore, the metagenomic analyses performed were efficient not only in the search of bioproducts of biotechnological interest and in the analysis of the functional and taxonomic profile of the metagenomes studied as well

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Seed germination and seedling establishment are critical processes for commercial plantation and depend directly on reserve mobilization as a source of cellular fuels and biosynthetic precursors. In this way, we investigated the coordination among reserve mobilization, metabolite partitioning, and mobilizing enzyme activities in Moringa oleifera Lam (moringa) an oil-seeded species employed in biofuel production. Seeds were germinated under controlled conditions and seedlings were grown hydroponically at a greenhouse. Samples were harvested at 0, 4, 8, 10, 12, 16, and 20 days after imbibition (DAI). The contents of dry mass (DM), neutral lipids (NL), soluble proteins (SP), starch, total soluble sugars (TSS), non-reducing sugars (NRS), and total free amino acids (TFAA) as the activity of isocitrate lyase (ICL), acid proteases, and amylases were determined. The mobilization of storage proteins was initiated during seed germination whereas the mobilization of storage lipids and starch was triggered throughout seedling establishment although all reserves have been depleted until 20 DAI. The partitioning of DM and metabolites to the roots and the shoots was uneven during seedling establishment. Low shoot/root ratio on the basis of DM could be related to the natural occurrence of moringa in drought climates. In the roots, TSS, NRS, and TFAA were accumulated from 12 to 16 DAI and then were consumed until the end of the experiment. In the shoots, TSS and TFAA were consumed in parallel with NRS accumulation from 12 to 20 DAI. The activity of ICL, acid proteases, and amylases was coordinated with the mobilization of lipids, proteins and starch respectively. Thus, we propose that the patterns of reserve mobilization and metabolite partitioning verified in moringa seem distinct from those found to other tree species and may be involved in metabolic strategies to enable environment colonization

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The recent insertion of biodiesel derived from oily vegetables in the Brazilian energetic matrix calls for the study of some aspects that belong to it. The analysis of the carbonized energetic pattern concerns the paradigm of economic development that is constitutionally enshrined sustainable development which make environmental protection compatible with the needs of the economic rationality. This text is structured according to the ideas of modern hermeneutic that sees substantial value in the principles capable of create a harmonious relationship between law and society. The study of the constitutional principles to conduct a legal analysis about the National Program for Production and Use of Biodiesel - PNPB. The aim of the research is the study of PNPB ahead with the constitutional principles governing the economic order. To achieve this end we studied the sustainable development as a constitutional principle. We start with the notion that the thematic principles, and fundamental to understanding the dimension of sustainable development institute, since its concept is closely related to the applications of the principles enshrined in virtually all the constitutional order of the Western world. Then this was the National Energy Policy, initiating the approach by guiding principles of the National Energy Policy to develop the theme of public policy in the energy sector. Therefore, we studied the National Program of Biodiesel Production and Use - PNPB. From a technical introduction to the concept of biodiesel and a brief historical background, analyzing their advantages compared to fossil fuels predominantly used. Then it became a regulatory overview of the Brazilian legislation on the subject, central to understanding the plans and objectives pursued by the Brazilian government with encouraging the production of biodiesel. Finally discussed the tax incentives for production and use of biodiesel in Brazil. From the idea of federalism, characterized the tax as an instrument of state intervention in the economy. And finally it brought the tax incentives of Law No. 11.116/2005 in the face of the constitutional principles of economy and tax, and tax incentives from projects related to the Kyoto Protocol