2 resultados para Friction coefficients
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
In this thesis, it is developed the robustness and stability analysis of a variable structure model reference adaptive controller considering the presence of disturbances and unmodeled dynamics. The controller is applied to uncertain, monovariable, linear time-invariant plants with relative degree one, and its development is based on the indirect adaptive control. In the direct approach, well known in the literature, the switching laws are designed for the controller parameters. In the indirect one, they are designed for the plant parameters and, thus, the selection of the relays upper bounds becomes more intuitive, whereas they are related to physical parameters, which present uncertainties that can be known easier, such as resistances, capacitances, inertia moments and friction coefficients. Two versions for the controller algorithm with the stability analysis are presented. The global asymptotic stability with respect to a compact set is guaranteed for both cases. Simulation results under adverse operation conditions in order to verify the theoretical results and to show the performance and robustness of the proposed controller are showed. Moreover, for practical purposes, some simplifications on the original algorithm are developed
Resumo:
Currently, vegetable oils have been studied for bio-lubricants base that fits the new environmental standards. Since, in a world full of finite natural resources, mineral oils bring consequences to the environment due to its low biodegradability and toxicity, also it is important to consider that synthetic oils have a high cost The aim of this work is to obtain a biolubricant additived with oxide nanoparticles (ZnO and CuO) for better resistance to friction and wear, which is not toxic to the environment and have better adherence under boundary lubrication. The methodology consisted in the synthesis of bio-lubricants (soybean and sunflower base) by epoxidation reaction. Then, some physical-chemical analysis in bio-lubricants are made to characterize theses lubricants, such as, density, acidity, iodine value, viscosity, viscosity index. Later, the lubricants were additive with nanoparticles. The tribological performance was evaluated by the equipment HFRR (High Frequency Reciprocating Rig) consisting of a wear test ball-plan type. The characterization of wear analysis was performed by SEM / EDS. The results show that bio-lubricants may be synthesized by reaction of epoxidation with good conversion. Tribological point of view, the epoxidized oils are more effective than lubricant additived with the oxide nanoparticles, they had lower coefficients of friction and better rate of film formation in the study. However, because they are environmentally friendly, bio-lubricants gain the relevant importance in tribological field