10 resultados para Foto Cine Clube Bandeirante
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
At the cashew nut processing industry it is often the generation of wastewaters containing high content of toxic organic compounds. The presence of these compounds is due mainly to the so called liquid of the cashew nut (CNSL). CNSL, as it is commercially known in Brazil, is the liquid of the cashew nut. It looks like an oil with dark brown color, viscous and presents a high toxicity index due to the chemical composition, i.e. phenol compounds, such as anacardic acid, cardol, 2-methyl cardol and monophenol (cardanol). These compounds are bio resistant to the conventional treatments. Furthermore, the corresponding wastewaters present high content of TOC (total organic carbon). Therefore due to the high degree of toxicity it is very important to study and develop treatments of these wastewaters before discharge to the environmental. This research aims to decompose these compounds using advanced oxidative processes (AOP) based on the photo-Fenton system. The advantage of this system is the fast and non-selective oxidation promoted by the hydroxyl radicals (●OH), that is under determined conditions can totally convert the organic pollutants to CO2 and H2O. In order to evaluate the decomposition of the organic charge system samples of the real wastewater od a processing cashew nut industry were taken. This industry was located at the country of the state of Rio Grande do Norte. The experiments were carried out with a photochemical annular reactor equipped with UV (ultra violet) lamp. Based on preliminary experiments, a Doehlert experimental design was defined to optimize the concentrations of H2O2 and Fe(II) with a total of 13 runs. The experimental conditions were set to pH equal to 3 and temperature of 30°C. The power of the lamps applied was 80W, 125W and 250W. To evaluate the decomposition rate measures of the TOC were accomplished during 4 hours of experiment. According to the results, the organic removal obtained in terms of TOC was 80% minimum and 95% maximum. Furthermore, it was gotten a minimum time of 49 minutes for the removal of 30% of the initial TOC. Based on the obtained experimental results, the photo-Fenton system presents a very satisfactory performance as a complementary treatment of the wastewater studied
Resumo:
Effluents from pesticide industries have great difficulty to decontaminate the environment and, moreover, are characterized by high organic charge and toxicity. The research group Center for Chemical Systems Engineering (CESQ) at the Department of Chemical Engineering of Polytechnical School of University of São Paulo and Department of Chemical Engineering, Federal University of Rio Grande do Norte have been applying the Advanced Oxidation Processes (AOP's) for the degradation of various types of pollutants. These processes are based on the generation of hydroxyl radicals, highly reactive substances. Thus, this dissertation aims to explore this process, since it has been proven to be quite effective in removing organic charge. Therefore, it was decided by photo-Fenton process applied to the degradation of the fungicide Thiophanate methyl in aqueous system using annular reactor (with lamp Philips HPLN 125W) and solar. The samples were collected during the experiment and analyzed for dissolved organic carbon (TOC) using a Shimadzu TOC (Shimadzu 5050A e VCP). The Doehlert experimental design has been used to evaluate the influence of ultraviolet radiation, the concentrations of methyl thiophanate (C12H14N4O4S2), hydrogen peroxide (H2O2) and iron ions (Fe2+), among these parameters, was considered the best experimental conditions, [Fe2+] = 0.6 mmol/L and [H2O2] = 0.038 mol/L in EXP 5 experiment and in SOL 5 experiment, obtaining a percentage of TOC removal of 60% in the annular reactor and 75% in the solar reactor
Resumo:
Increasing concern with the environment, in addition to strict laws, has induced the industries to find altenatives to the treatment of their wastes. Actually, the oil industry has sought solutions to overcome a big environmental problem, i.e., oil field produced water being discharged to the sea. These effluents have organic compounds dissolved, such as polycyclic aromatic hydrocarbons, phenols, benzene, toluene, ethylbenzene and xylenes (BTEX). These compounds are difficult to be removed and have high toxicity. The advanced oxidation processes - AOP are effective to degradation of these organic compounds, because they generate hydroxyl radicals with high potential of oxidation. This work includes the reactor photochemical development applied in the photodegradation treatment (by photo-Fenton process) of wastewaters containing organic compounds dissolved, aiming at treatment and recovery the oil field produced water. The studied reactor allowed the evaluation of two ultraviolet radiation sources that is the main factor to describe the feasibility of the photo¬Fenton treatment, i.e., sun and black light fluorescent lamps, and other relevant variables the process: concentration of reagents, irradiated area and also various reactor configurations to maximize the use of radiation. The organic matter degradation was verified with samples collected during the experimental and analyzed with a total organic carbon analyzer (TOC), which expressed the results in terms of mgC/L. The solar radiation was more effective than radiation from the lamps. it's an important factor for the operation costs cutting. Preliminary experiments applied to oil field produced water treatment have showed satisfactory results, reducing up to 76 % of organic matter
Resumo:
Increasing concern with the environment, in addition to strict laws, has induced the industries to find alternatives to the treatment of their wastes. Actually, the oil industry has sought solutions to overcome a big environmental problem, i.e., oil field produced water being discharged to the sea. These effluents have organic compounds dissolved, such as polycyclic aromatic hydrocarbons, phenols, benzene, toluene, ethylbenzene and xylenes (BTEX). These compounds are difficult to be removed and have high toxicity. The advanced oxidation processes - AOP are effective to degradation of these organic compounds, because they generate hydroxyl radicals with high potential of oxidation. This work includes the reactor photochemical development applied in the photodegradation treatment (by photo-Fenton process) of wastewaters containing organic compounds dissolved, aiming at treatment and recovery the oil field produced water. The studied reactor allowed the evaluation of two ultraviolet radiation sources that is the main factor to describe the feasibility of the photo- Fenton treatment, i.e., sun and black light fluorescent lamps, and other relevant variables the process: concentration of reagents, irradiated area and also various reactor configurations to maximize the use of radiation. The organic matter degradation was verified with samples collected during the experimental and analyzed with a total organic carbon analyzer (TOC), which expressed the results in terms of mgC/L. The solar radiation was more effective than radiation from the lamps. It's an important factor for the operation costs cutting. Preliminary experiments applied to oil field produced water treatment have showed satisfactory results, reducing up to 76 % of organic matter
Resumo:
During production of oil and gas, there is also the production of an aqueous effluent called produced water. This byproduct has in its composition salts, organic compounds, gases and heavy metals. This research aimed to evaluate the integration of processes Induced Air Flotation (IAF) and photo-Fenton for reducing the Total Oils and Greases (TOG) present in produced water. Experiments were performed with synthetic wastewater prepared from the dispersion of crude oil in saline solution. The system was stirred for 25 min at 33,000 rpm and then allowed to stand for 50 min to allow free oil separation. The initial oil concentration in synthetic wastewater was 300 ppm and 35 ppm for the flotation and the photo-Fenton steps, respectively. These values of initial oil concentration were established based on average values of primary processing units in Potiguar Basin. The processes were studied individually and then the integration was performed considering the best experimental conditions found in each individual step. The separation by flotation showed high removal rate of oil with first-order kinetic behavior. The flotation kinetics was dependent on both the concentration and the hydrophilic-lipophilic balance (HLB) of the surfactant. The best result was obtained for the concentration of 4.06.10-3 mM (k = 0.7719 min-1) of surfactant EO 2, which represents 86% of reduction in TOG after 4 min. For series of surfactants evaluated, the separation efficiency was found to be improved by the use of surfactants with low HLB. Regarding the TOG reduction step by photo-Fenton, the largest oil removal reached was 84% after 45 min of reaction, using 0.44 mM and 10 mM of ferrous ions and hydrogen peroxide, respectively. The best experimental conditions encountered in the integrated process was 10 min of flotation followed by 45 min of photo-Fenton with overall TOG reduction of 99%, which represents 5 ppm of TOG in the treated effluent. The integration of processes flotation and photo-Fenton proved to be highly effective in reducing TOG of produced water in oilfields
Resumo:
The behavioral patterns follow to environmental changes, including area fidelity and individuals association patterns. Several techniques are used to record these behavioral patterns and the photo-identification has been suggested as a proper tool because of its various advantages. Based on this technique, this research verified, between August of 2005 and January of 2006, area fidelity and association patterns of Sotalia guianensis, at Distrito de Pipa s bays, Rio Grande do Norte State south coast. Besides, we measured the association patterns by using the Jaccard index or Half-Weight Index (HWI). According the observation, 22 individuals were not resighted, 11 were resighted, and 36 new individuals were recorded. Nowadays, 69 individuals are cataloged. The residency rate indicated heterogeneity on studied area permanence and the association patterns between photo-identified seem to be context-specific. In addiction, the comparison of associations between two different age classes showed some individuals more frequently interacting with immature individuals. We also observed fluidity on association patterns among our individuals. We suggest that S. guianensis population from Pipa shows plasticity
Resumo:
This dissertation is about new real estate development in the southward expansion area in Natal, Brazil, by use of high-rise condos, so-called club-condominiums. The area includes part of the neighboring municipality, Parnamirim, and focuses on the role played by urban developers in the housing market. The main feature in these condos are common areas filled with leisure equipments, allegedly to grant quality of life, comfort and tranquility to residents. The rapid development of the area takes advantage of large plots of land available as well as of urban infrastructure. Overall preference of middle-class sectors for the South area of Natal (and adjoining part of Parnamirim) is also a factor worth of note. For this reason, this part of the city constitutes one of the preferred areas of urban developers. This dissertation includes a discussion of Henri Lefebvre s production of space, emphasizing its tridimensional features. It draws on David Harvey s works to deal with transformations of the built environment regarding the dynamics of real estate markets; in particular, it considers the idea of creative destruction. Finally, the dissertation discusses the concepts developed by Pedro Abramo regarding the forms of operation by urban entrepreneurs, in particular the concepts of urban convention and spatial innovation. For the empirical work, a number of interviews with key entrepreneurs and civil servants were undertaken. In more general terms, it is worth observing that there is a direct relationship between the location of such developments and the process of spatial fragmentation, seen both as a consequence and a strategy of the way urban developers operate
Resumo:
Clays are materials with specific properties that make them promising for various studies. In this work we used the vermiculite clay as support for iron compounds, in order to obtain promising materials for application in the heterogeneous type photo-Fenton process. In all, the study included six solid, starting from the vermiculite (V0) was obtained calcined vermiculite (V0-C), the mixed material (V0/β-FeOOH) formed by vermiculite more akaganeite, exchanged vermiculite (v0t-C), vermiculite impregnated Wet (V0u-C) and V0u-CL that is the solid obtained by impregnating with a back washing. The solids of the study had their physical and chemical characteristics investigated by the following characterization techniques: X-Ray Diffraction (XRD), Infrared Spectroscopy (IR), Energy Dispersive Spectroscopy (EDS), X-Ray Fluorescence Spectroscopy (XRF), UV-Vis by Diffuse Reflectance (DR UV-Vis), Thermogravimetric Analysis (TGA) and Scanning Electron Microscopy (SEM). The V0 material showed three distinct phases, which are the very vermiculite, hidrobiotite and biotite, the last two phases are part of the geological of formation process vermiculite. The solids obtained after the modification showed an increase in the amount of iron present in the clay, these being quantities important for application in photocatalysis. The micrographs and EDS data, show that after treatment of addition of the metal , the iron was intercalary in structure of vermiculite for solid V0t-C and V0u-C, however, this did not occur with mixed material. In the photoFenton process, was observed a maximum removal of 88.8% of the dye methylene blue coloring for the catalyst V0/β-FeOOH, while for the other solids was obtained values between 76.8 and 62.6%, compared to 37.8% of discoloration without the presence of catalyst. Therefore, it is concluded that the vermiculite clay presents as a good catalyst and iron support for the, beyond of presenting a low cost because of its high abundance.
Resumo:
Advanced Oxidation Processes (AOP) are techniques involving the formation of hydroxyl radical (HO•) with high organic matter oxidation rate. These processes application in industry have been increasing due to their capacity of degrading recalcitrant substances that cannot be completely removed by traditional processes of effluent treatment. In the present work, phenol degrading by photo-Fenton process based on addition of H2O2, Fe2+ and luminous radiation was studied. An experimental design was developed to analyze the effect of phenol, H2O2 and Fe2+ concentration on the fraction of total organic carbon (TOC) degraded. The experiments were performed in a batch photochemical parabolic reactor with 1.5 L of capacity. Samples of the reactional medium were collected at different reaction times and analyzed in a TOC measurement instrument from Shimadzu (TOC-VWP). The results showed a negative effect of phenol concentration and a positive effect of the two other variables in the TOC degraded fraction. A statistical analysis of the experimental design showed that the hydrogen peroxide concentration was the most influent variable in the TOC degraded fraction at 45 minutes and generated a model with R² = 0.82, which predicted the experimental data with low precision. The Visual Basic for Application (VBA) tool was used to generate a neural networks model and a photochemical database. The aforementioned model presented R² = 0.96 and precisely predicted the response data used for testing. The results found indicate the possible application of the developed tool for industry, mainly for its simplicity, low cost and easy access to the program.
Resumo:
Advanced Oxidation Processes (AOP) are techniques involving the formation of hydroxyl radical (HO•) with high organic matter oxidation rate. These processes application in industry have been increasing due to their capacity of degrading recalcitrant substances that cannot be completely removed by traditional processes of effluent treatment. In the present work, phenol degrading by photo-Fenton process based on addition of H2O2, Fe2+ and luminous radiation was studied. An experimental design was developed to analyze the effect of phenol, H2O2 and Fe2+ concentration on the fraction of total organic carbon (TOC) degraded. The experiments were performed in a batch photochemical parabolic reactor with 1.5 L of capacity. Samples of the reactional medium were collected at different reaction times and analyzed in a TOC measurement instrument from Shimadzu (TOC-VWP). The results showed a negative effect of phenol concentration and a positive effect of the two other variables in the TOC degraded fraction. A statistical analysis of the experimental design showed that the hydrogen peroxide concentration was the most influent variable in the TOC degraded fraction at 45 minutes and generated a model with R² = 0.82, which predicted the experimental data with low precision. The Visual Basic for Application (VBA) tool was used to generate a neural networks model and a photochemical database. The aforementioned model presented R² = 0.96 and precisely predicted the response data used for testing. The results found indicate the possible application of the developed tool for industry, mainly for its simplicity, low cost and easy access to the program.