6 resultados para Forrageamento

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated the influence of intrinsic and extrinsic factors on the feeding ecology and foraging behavior of the whiptail lizard Ameivula aff. ocellifera, a new species widely distributed in the Brazilian Caatinga, and that is in process of description. In attendance to the objectives, the Dissertation was structured in two chapters, which correspond to scientific articles, one already published and the other to be submitted for publication. In Chapter 1 were analyzed the general diet composition, the relationship between lizard size and prey size, and the occurrence of sexual and ontogenetic differences in the diet. Chapter 2 contemplates a seasonal analysis of diet composition during two rainy seasons interspersed with a dry season, and the quantitative analysis of foraging behavior during two distinct periods. The diet composition was determined through stomach analysis of lizards (N = 111) collected monthly by active search, between September 2008 and August 2010, in the Estação Ecológica do Seridó (ESEC Seridó), state of Rio Grande do Norte. Foraging behavior was investigated during a rainy and a dry month of 2012 also in ESEC Seridó, by determining percent of time moving (PTM), number of movements per minute (MPM) and prey capture rate by the lizards (N = 28) during foraging. The main prey category in the diet of Ameivula aff. ocellifera was Insect larvae, followed by Orthoptera, Coleoptera and Araneae. Termites (Isoptera) were important only in numeric terms, having negligible volumetric contribution (<2%) and low frequency of occurrence, an uncommon feature among whiptail lizards. Males and females did not differ neither in diet composition nor in foraging behavior. Adults and juveniles ingested similar prey types, but differed in prey size. Maximum and minimum prey sizes were positively correlated with lizard body size, suggesting that in this population individuals experience an ontogenetic change in diet, eating larger prey items while growing, and at the same time excluding smaller ones. The diet showed significant seasonal differences; during the two rainy seasons (2009 and 2010), the predominant prey in diet were Insect larvae, Coleoptera and Orthoptera, while in the dry season the predominant prey were Insect larvae, Hemiptera, Araneae and Orthoptera. The degree of mobility of consumed prey during the rainy seasons was lower, mainly due to a greater consumption of larvae (highly sedentary prey) during these periods. Population niche breadth was higher in the dry season, confirming the theoretical prediction that when food is scarce, the diets tend to be more generalized. Considering the entire sample, Ameivula aff. ocellifera showed 61,0 ± 15,0% PTM, 2,03 ± 0,30 MPM, and captured 0,13 ± 0,14 per minute. Foraging mode was similar to that found for other whiptail lizards regarding PTM, but MPM was relatively superior. Seasonal differences were verified for PTM, which was significantly higher in the rainy season (66,4 ± 12,1) than in the dry season (51,5 ± 15,6). It is possible that this difference represents a behavioral adjustment in response to seasonal variation in the abundance and types of prey available in the environment in each season

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The behavioral decisions of animals do not occur randomly, because behaviors are adjusted to ensure the survival and reproduction of the animal. In this research, I examined behavioral decisions in the foraging context of the ant Dinoponera quadriceps with regard to orientation, food avaliation and foraging dynamic to individual level. The study was conducted at the Laboratory of Behavioral Biology at UFRN and in an area of secondary Atlantic Forest in FLONA-ICMBio Nísia Floresta/RN. In all observations and experiments, ants were marked individually with an alphanumeric code label fixed on the thorax. In the first part of the study, I analyzed the orientation cues used by D. quadriceps. The tests were performed in a maze of 17 compartments. Each forager was tested for 10 min in three sessions for six different treatments. The treatments consisted of the presence or absence of odor and superior or frontal visual cues. The workers demonstrated that the presence of odor is indispensable and front visual cues are more effective than superior visual cues. In the second part, I investigated the discrimination of food, considering the parameters, size, weight and volume. In a 'cafeteria' experiment, I offered cylindrical pieces of food (mortadella) in a Petri dish, within an experimental arena 1m². Initially, the pieces were of four different sizes; in a second step, the pieces were of the same size but with different weight; in the last step, the pieces had the same weight but different volumes. The results showed the effect of the size and weight parameters for food choice. In the third part of the study, I evaluated the influence of the activity of active foragers on inactive ones. In this part, the colonies were observed in a natural environment. The observations took place on three consecutive days in 10 episodes, total of 30 days for each colony, 12 hours/day. On the first day, I registered the output and input of workers; on the second day, the most active ants on the first day were taken and given back at the end of the observations; on the third day, the observations were similar to the first day. As a result, the workers of D. quadriceps show autostimulation and they do not show social facilitation and the colony compensates the absence of the most active workers. Based on the stated, I conclude that workers of D. quadriceps use chemical, frontal and superior visual orientation cues during their displacements. They discriminate the chosen food by size and weight. The regulation of activity dynamics of foragers is by autostimulation, an active worker does not influence the activity of an inactive worker, the successful search previous is the stimulus to the successful worker itself to continue foraging activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intending to explain the extraordinary lizard coexistence levels found in Australian deserts, Morton & James (1988) figured out a hypothesis which defends that the termite diversity would bring about lizard radiation. This study aims to verify the validation of that hypothesis in Caatinga lizard assemblages. This study also objectives verifying if the termite defense mechanisms influence their consuming levels by lizards and if this pattern differs between different lizard lineages. Termites were collected using a standardized sampling protocol of termites. Besides using haphazard sampling, we collect lizards with 108 pitfall traps in each area. Intending to check the linkage between the termite and lizard assemblages, the lizard stomach contents were analyzed and then a canonical correspondence analysis was performed. The presence of nonrandom patterns of diet overlap among the lizard species was also examined. Aiming to check if the defense mechanisms of termite influence their consuming pattern by lizards it was performed a laboratory experiment where termite with different defense mechanisms were offered to lizards of two different lineages. We verified that lizard assemblages do not consume termites according to termite abundance in ecosystems. Furthermore, mean niche overlap lizard species did not differ significantly from that expected by chance. We found that termite chemical defense mechanism does influence the termite s pattern consuming by lizards. These results do not corroborate premises which support Morton & James hypothesis (1988) and point out that lizard do not chose termites based on their abundance, but, trying to avoid consuming termites which exhibit chemical defense mechanisms. This defense mechanism, however, may not be the only explanation to patterns of termite s consuming by lizards.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

When scientists study methods, theory and standards in an inseparable form, he is facing a paradigm. Throughout the development of a determined science, paradigms can change by changing the methods, objective and standards of research. Fisheries science is changing the paradigm moving from the paradigm of maximization in the use of resources, quantified by the index of the catch, which was influenced by evolutionary concepts such as Optimal Foraging Theory, to the sustainability paradigm that seeks its foundation in the fishery ecosystem perspective. The goal of this study was to review methods, theory and the history of ecosystem indexes of fishery science that attempts to determine sustainability of fishery resources from the data capture. Ecosystems indexes by themselves may not be useful to measure the sustainability of fishing because they focus only on the environmental or ecological side of the sustainability tripod. Probably to measure the sustainability of fishing these indexes should include in the future the Payments for Ecosystem Services and Social Resilience. Thus the methods and theories are in constantly changing within science to meet the most current paradigm

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study evaluated the spatial, time and alimentary niches of Tropidurus hispidus and Tropidurus semitaeniatus in sympatry in a caatinga of Rio Grande do Norte, Brazil, as well as their foraging and termoregulatory behaviors, the activity body temperature and their reproductive and fat body cycles. Monthly excursions, from October 2006 to May 2008, were conducted at the Ecological Station of the Seridó (ESEC Seridó), Serra Negra do Norte municipality, using specific methodology for investigation of the aforementioned objectives. The two species presented similarities in space niche use, mainly in rocky habitat, however they differed in vertical microhabitat use with T. hispidus using a larger vertical microhabitat range. In the dry season the time of activity of both species was bimodal. In the wet season T. semitaeniatus showed a unimodal activity period, while T. hispidus maintained an bimodal activity period. In terms of importance in the diet, to both species, Hymenoptera/Formicidae and Isoptera predominated during the dry season. In the wet season, although Hymenoptera/Formicidae had larger importance among the prey items, lizards opportunistically predated on Lepidoptera larvae, Coleoptera larvae/adults and Orthoptera nymphs/adults. The foraging intensity revealed differences between the species, mainly in the wet season, when T. semitaeniatus was more active than T. hispidus. The mean activity body temperature of T. semitaeniatus was significantly higher than that of T. hispidus. The thermoregulatory behavior showed that during the dry season T. hispidus and T. semitaeniatus spent more time in shade or under filtered sun. In the wet season, T. hispidus did not show differences in the amount of time spent among the light exposure locations, however T. semitaeniatus spent most of their time exposed to direct sun or filtered sun. The reproductive cicle of T. hispidus and T. semitaeniatus occurred from the middle of the dry season to the beginning of the wet season. In both species, female reproductive activity was influenced by precipitation, whereas males exhibited spermatozoa in their testes throughout the year, and their reproductive activity was not related with any of the climatic variables analysed. In the two species, the fat storage varied inversely with reproductive activity, and there was no difference in fat body mass between females and males. We concluded that the segregation between T. hispidus and T. semitaeniatus in this caatinga area occurs in vertical space use, in the largest vagility of T. hispidus in microhabitat use and larger range size of their alimentary xviii items. Additionally, significant seasonal differences in relation to the activity period, body temperature, and foraging and termoregulatory behaviors between these two Tropidurus species facilitate their coexistence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lemon sharks, Negaprion brevirostris, are common in the Fernando de Noronha Archipelago, but detailed information about the species in this site is lacking. The aim of this study was to describe the spatial distribution, grouping behavior, habitat use and behavioral ecology of juvenile lemon sharks in the archipelago, and their interaction with some environmental and ecological factors. During 2006 and 2007, the presence and spatial distribution of juvenile sharks were quantified through scuba diving and snorkeling at several sites of the archipelago. In 2008 the habitat use of juvenile sharks was quantified through visual census while snorkeling along 300 x 8 m strip transects. During these transects the grouping behavior of lemon sharks was quantified by ad libitum. Results indicate that Fernando de Noronha Archipelago is used as a nursery area for lemon sharks, and the parturition occurs from November to April. Juveniles preferred using shallower areas available by the tide variation and formed groups only in the presence of adult conspecifics. This preference for shallower habitats and the group behavior probably are anti-predatory tactics used by juvenile lemon sharks, in response to the low availability of shelter and high predation risk of the studied areas. Quantifications of prey availability and predation risk of juveniles showed that, in general, lemon sharks are trading-off food by security and investing in sites with higher possibility of energetic return. Behavioral observations enabled to record juvenile carangid fishes following juvenile lemon sharks, remora host-parasite and juvenile sharks foraging on schools of herrings and octopuses. We also recorded the behavior of juvenile sharks following conspecifics of similar size, circling with two or three individuals and smaller individuals giving way to larger juveniles. When adults are present, juvenile lemon sharks are more social than solitary, indicating that predation is one of the factors that contribute to social behaviors of the species. Results also suggest that when grouped the juveniles have a hierarchical organization according to body size. Furthermore, observation of large adult females with several fresh mating bites and scars in the same habitats used by juvenile lemon sharks, indicates that Fernando de Noronha Archipelago is used as nursery and mating grounds by this species