7 resultados para Foguetes aereos
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Launching centers are designed for scientific and commercial activities with aerospace vehicles. Rockets Tracking Systems (RTS) are part of the infrastructure of these centers and they are responsible for collecting and processing the data trajectory of vehicles. Generally, Parabolic Reflector Radars (PRRs) are used in RTS. However, it is possible to use radars with antenna arrays, or Phased Arrays (PAs), so called Phased Arrays Radars (PARs). Thus, the excitation signal of each radiating element of the array can be adjusted to perform electronic control of the radiation pattern in order to improve functionality and maintenance of the system. Therefore, in the implementation and reuse projects of PARs, modeling is subject to various combinations of excitation signals, producing a complex optimization problem due to the large number of available solutions. In this case, it is possible to use offline optimization methods, such as Genetic Algorithms (GAs), to calculate the problem solutions, which are stored for online applications. Hence, the Genetic Algorithm with Maximum-Minimum Crossover (GAMMC) optimization method was used to develop the GAMMC-P algorithm that optimizes the modeling step of radiation pattern control from planar PAs. Compared with a conventional crossover GA, the GAMMC has a different approach from the conventional one, because it performs the crossover of the fittest individuals with the least fit individuals in order to enhance the genetic diversity. Thus, the GAMMC prevents premature convergence, increases population fitness and reduces the processing time. Therefore, the GAMMC-P uses a reconfigurable algorithm with multiple objectives, different coding and genetic operator MMC. The test results show that GAMMC-P reached the proposed requirements for different operating conditions of a planar RAV.
Resumo:
Arthropods are abundant organisms possess great wealth and diversity representing about 82% of all known animal species. Contribute as a source of biomass and their abundance is an indicator of ecological change. The aim of this study was to evaluate the biomass and abundance found in the salt marsh environment throughout the year and relate them to the climatic factors (temperature, precipitation and relative humidity) that can influence the abundance and biomass of arthropods. The study was conducted at the Centro de Lançamento de Foguetes Barreira do Inferno, city of Parnamirim, Rio Grande do Norte, in the period February 2011 to January 2012, using pitfall traps, stationary window and beating tray. Among the 26 orders found, the most abundant were: Hymenoptera, Orthoptera, Araneae. Taxa Hymenoptera, Blattodea and Orthoptera showed higher biomass volume. Climatic factors did not influence the fall of Arthropods in the traps, however, the lowest abundance during the rainy season the action of raindrops, reduced the activity of these arthropods on vegetation, reducing its capture in traps (pitfall traps and stationary window ) and method of collection(entomological umbrella)
Resumo:
This work presents the development of new microwaves structures, filters and high gain antenna, through the cascading of frequency selective surfaces, which uses fractals Dürer and Minkowski patches as elements, addition of an element obtained from the combination of the other two simple the cross dipole and the square spiral. Frequency selective surfaces (FSS) includes a large area of Telecommunications and have been widely used due to its low cost, low weight and ability to integrate with others microwaves circuits. They re especially important in several applications, such as airplane, antennas systems, radomes, rockets, missiles, etc. FSS applications in high frequency ranges have been investigated, as well as applications of cascading structures or multi-layer, and active FSS. In this work, we present results for simulated and measured transmission characteristics of cascaded structures (multilayer), aiming to investigate the behavior of the operation in terms of bandwidth, one of the major problems presented by frequency selective surfaces. Comparisons are made with simulated results, obtained using commercial software such as Ansoft DesignerTM v3 and measured results in the laboratory. Finally, some suggestions are presented for future works on this subject
Resumo:
This work presents a theoretical and numerical analysis for the cascading of frequency selective surfaces, which uses rectangular patches and triangular Koch fractals as elements. Two cascading techniques are used to determine the transmission and reflection characteristics. Frequency selective surfaces includes a large area of Telecommunications and have been widely used due to its low cost, low weight and ability to integrate with others microwaves circuits. They re especially important in several applications, such as airplane, antennas systems, radomes, rockets, missiles, etc.. FSS applications in high frequency ranges have been investigated, as well as applications of cascading structures or multi-layer, and active FSS. Furthermore, the analyses uses the microwave circuit theory, with the Floquet harmonics, it allows to obtain the expressions of the scattering parameters of each structure and also of the composed structure of two or more FSS. In this work, numeric results are presented for the transmission characteristics. Comparisons are made with experimental results and simulated results using the commercial software Ansoft Designer® v3. Finally, some suggestions are presented for future works on this subject
Resumo:
Global Positioning System, or simply GPS, it is a radionavigation system developed by United States for military applications, but it becames very useful for civilian using. In the last decades Brazil has developed sounding rockets and today many projects to build micro and nanosatellites has appeared. This kind of vehicles named spacecrafts or high dynamic vehicles, can use GPS for its autonome location and trajectories controls. Despite of a huge number of GPS receivers available for civilian applications, they cannot used in high dynamic vehicles due environmental issues (vibrations, temperatures, etc.) or imposed dynamic working limits. Only a few nations have the technology to build GPS receivers for spacecrafts or high dynamic vehicles is available and they imposes rules who difficult the access to this receivers. This project intends to build a GPS receiver, to install them in a payload of a sounding rocket and data collecting to verify its correct operation when at the flight conditions. The inner software to this receiver was available in source code and it was tested in a software development platform named GPS Architect. Many organizations cooperated to support this project: AEB, UFRN, IAE, INPE e CLBI. After many phases: defining working conditions, choice and searching electronic, the making of the printed boards, assembling and assembling tests; the receiver was installed in a VS30 sounding rocket launched at Centro de Lançamento da Barreira do Inferno in Natal/RN. Despite of the fact the locations data from the receiver were collected only the first 70 seconds of flight, this data confirms the correct operation of the receiver by the comparison between its positioning data and the the trajectory data from CLBI s tracking radar named ADOUR
Resumo:
Nowadays there has been a major breakthrough in the aerospace area, with regard to rocket launches to research, experiments, telemetry system, remote sensing, radar system (tracking and monitoring), satellite communications system and insertion of satellites in orbit. This work aims at the application of a circular cylindrical microstrip antenna, ring type, and other cylindrical rectangular in structure of a rocket or missile to obtain telemetry data, operating in the range of 2 to 4 GHz, in S-band. Throughout this was developed just the theoretical analysis of the Transverse transmission line method which is a method of rigorous analysis in spectral domain, for use in rockets and missiles. This analyzes the spread in the direction "ρ" , transverse to dielectric interfaces "z" and "φ", for cylindrical coordinates, thus taking the general equations of electromagnetic fields in function of e [1]. It is worth mentioning that in order to obtain results, simulations and analysis of the structure under study was used HFSS program (High Frequency Structural Simulator) that uses the finite element method. With the theory developed computational resources were used to obtain the numerical calculations, using Fortran Power Station, Scilab and Wolfram Mathematica ®. The prototype was built using, as a substrate, the ULTRALAM ® 3850, of Rogers Corporation, and an aluminum plate as a cylindrical structure used to support. The agreement between the measured and simulated results validate the established processes. Conclusions and suggestions are presented for continuing this work
Resumo:
This study aims to include topics related to Space Science in elementary education from an experiment that aims to rescue the science teachers in public schools of São Tomé, RN, a taste for experimentation and exploration of advanced technologies. During this research with teachers found that they knew enough about the subject, but this knowledge was restricted to the events disclosed by the media. Regarding scientific knowledge, that same surface, they had many conceptual difficulties which hindered the approach of these topics in their classes. To overcome this difficulty, a workshop was held where teachers had the opportunity to discuss the historical aspect of Space Science, some physical concepts related to it, and the conduct of experiments with PET bottle rockets that recover from the curiosity typical of how the science. The results were outlined in the form of Planning Didactic built by teachers and using themes related to space science, from there, discussing content already provided in the composition of the schools curriculum. Therefore, this work allowed the teachers a minimum training required for them to not only reproduce, but readjusted and build, from this, their own paths in the classroom at the fundamental level