6 resultados para Foaming

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work addresses the production of lightweight concrete building elements, such as plates, prefabricated slabs for pre-molded and panels of fencing, presenting a singular concrete: the Lightweight Concrete, with special properties such low density and good strength, by means of the joint use of industrial waste of thermosetting unsaturated polyesters and biodegradable foaming agent, named Polymeric Lightweight Concrete. This study covered various features of the materials used in the composition of the Polymeric Lightweight Concrete, using a planning of factorial design 23, aiming at studying of the strength, production, dosage processes, characterization of mechanical properties and microstructural analysis of the transition zone between the light artificial aggregate and the matrix of cement. The results of the mechanical strength tests were analyzed using a computational statistics tool (Statistica software) to understand the behavior and obtain the ideal quantity of each material used in the formula of the Polymeric Lightweight Concrete. The definition of the ideal formula has the purpose of obtaining a material with the lowest possible dry density and resistance to compression in accordance with NBR 12.646/92 (≥ 2.5 MPa after 28 days). In the microstructural characterization by scanning electron microscopy it was observed an influence of the materials in the process of cement hydration, showing good interaction between the wrinkled face of the residue of unsaturated polyesters thermosetting and putty and, consequently, the final strength. The attaining of an ideal formula, given the Brazilian standards, the experimental results obtained in the characterization and comparison of these results with conventional materials, confirmed that the developed Polymeric Lightweight Concrete is suitable for the production of building elements that are advantageous for construction

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The preparation of cement slurries for offshore well cementing involves mixing all solid components to be added to the mixing water on the platform. The aim of this work was to study the formulation of pre-prepared dry mixtures, or grouts, for offshore oilwell cementing. The addition of mineral fillers in the strength of lightweight grouts applied for depths down to 400 m under water depths of 500 m was investigated. Lightweight materials and fine aggregates were selected. For the choice of starting materials, a study of the pozzolanic activity of low-cost fillers such as porcelain tile residue, microsilica and diatomaceous earth was carried out by X-ray diffraction and mechanical strength tests. Hardened grouts containing porcelain tile residue and microsilica depicted high strength at early ages. Based on such preliminary investigation, a study of the mechanical strength of grouts with density 1.74 g/cm3 (14.5 lb/gal) cured initially at 27 °C was performed using cement, microsilica, porcelain tile residue and an anti-foaming agent. The results showed that the mixture containing 7% of porcelain tile residue and 7% of microsilica was the one with the highest compressive strength after curing for 24 hours. This composition was chosen to be studied and adapted for offshore conditions based on testes performed at 4 °C. The grout containing cement, 7% of porcelain tile residue, 7% of active silica and admixtures (CaCl2), anti-foaming and dispersant resulted satisfactory rheology and mechanical strength after curing for 24 hours of curing

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Foam was developed as a novel vehicle for streptokinase with the purpose of increasing the contact time and area between the fibrinolytic and the target thrombus, which would lead to a greater therapeutic efficacy at lower doses, decreasing the drug s potential to cause bleeding. Fibrinolytic foams were prepared using CO2 and human albumin (at different v:v ratios), as the gas and liquid phases, respectively, and streptokinase at a low total dose (100,000 IU) was used as fibrinolytic agent conveyed in 1 mL of foam and in isotonic saline solution. The foams were characterized as foam stability and apparent viscosity. The thrombolytic effect of the streptokinase foam was determined in vitro as thrombus lysis and the results were compared to those of a fibrinolytic solution (prepared using the same dose of streptokinase) and foam without the fibrinolytic. In vitro tests were conducted using fresh clots were weighed and placed in test tubes kept at 37 ° C. All the samples were injected intrathrombus using a multiperforated catheter. The results showed that both foam stability and apparent viscosity increased with the increase in the CO2:albumin solution ratio and therefore, the ratio of 3:1 was used for the incorporation of streptokinase. The results of thrombus lysis showed that the streptokinase foam presented the highest thrombolytic activity (44.78 ± 9.97%) when compared to those of the streptokinase solution (32.07 ± 3.41%) and the foam without the drug (19.2 ± 7.19%). We conclude that fibrinolytic foam showed statistically significant results regarding the enhancement of the lytic activity of streptokinase compared to the effect of the prepared saline solution, thus it can be a promising alternative in the treatment of thrombosis. However, in vivo studies are needed in order to corroborate the results obtained in vitro

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Enzymes have been widely used in biosynthesis/transformation of organic compounds in substitution the classic synthetic methods. This work is the first writing in literature of enzymatic synthesis for attainment the biossurfactants, the use glucose sucrose, ricinoleic acid e castor oil as substratum, and as biocatalyst, used immobilized lipase Thermomyces lanuginose, Rhizomucor miehei and the Candida antarctica lipase B; alkaline protease and neutral protease from Bacillus subtillis and yeast Saccharomyces cerevisiaeI. The analysis of HPLC (high performance liquid chromatography) showed that highest conversions were reached of used the alkaline protease from Bacillus subtillis. Laboratory tests, to evaluate the applicability, indicated that the produced biosurfactantes had good stability in presence of salts (NaCl) and temperature (55 e 25°C), they are effective in the reduction of the superficial tension and contac angle, but they have little foaming capacity, when compared with traditional detergents. These results suggest that the prepared surfactants have potential application as wetting agent and perforation fluid stabilizer

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work addresses the production of lightweight concrete building elements, such as plates, prefabricated slabs for pre-molded and panels of fencing, presenting a singular concrete: the Lightweight Concrete, with special properties such low density and good strength, by means of the joint use of industrial waste of thermosetting unsaturated polyesters and biodegradable foaming agent, named Polymeric Lightweight Concrete. This study covered various features of the materials used in the composition of the Polymeric Lightweight Concrete, using a planning of factorial design 23, aiming at studying of the strength, production, dosage processes, characterization of mechanical properties and microstructural analysis of the transition zone between the light artificial aggregate and the matrix of cement. The results of the mechanical strength tests were analyzed using a computational statistics tool (Statistica software) to understand the behavior and obtain the ideal quantity of each material used in the formula of the Polymeric Lightweight Concrete. The definition of the ideal formula has the purpose of obtaining a material with the lowest possible dry density and resistance to compression in accordance with NBR 12.646/92 (≥ 2.5 MPa after 28 days). In the microstructural characterization by scanning electron microscopy it was observed an influence of the materials in the process of cement hydration, showing good interaction between the wrinkled face of the residue of unsaturated polyesters thermosetting and putty and, consequently, the final strength. The attaining of an ideal formula, given the Brazilian standards, the experimental results obtained in the characterization and comparison of these results with conventional materials, confirmed that the developed Polymeric Lightweight Concrete is suitable for the production of building elements that are advantageous for construction

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The preparation of cement slurries for offshore well cementing involves mixing all solid components to be added to the mixing water on the platform. The aim of this work was to study the formulation of pre-prepared dry mixtures, or grouts, for offshore oilwell cementing. The addition of mineral fillers in the strength of lightweight grouts applied for depths down to 400 m under water depths of 500 m was investigated. Lightweight materials and fine aggregates were selected. For the choice of starting materials, a study of the pozzolanic activity of low-cost fillers such as porcelain tile residue, microsilica and diatomaceous earth was carried out by X-ray diffraction and mechanical strength tests. Hardened grouts containing porcelain tile residue and microsilica depicted high strength at early ages. Based on such preliminary investigation, a study of the mechanical strength of grouts with density 1.74 g/cm3 (14.5 lb/gal) cured initially at 27 °C was performed using cement, microsilica, porcelain tile residue and an anti-foaming agent. The results showed that the mixture containing 7% of porcelain tile residue and 7% of microsilica was the one with the highest compressive strength after curing for 24 hours. This composition was chosen to be studied and adapted for offshore conditions based on testes performed at 4 °C. The grout containing cement, 7% of porcelain tile residue, 7% of active silica and admixtures (CaCl2), anti-foaming and dispersant resulted satisfactory rheology and mechanical strength after curing for 24 hours of curing