58 resultados para Fluxos e transnacionalismos
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Metabolic flux analysis (MFA) is a powerful tool for analyzing cellular metabolism. In order to control the growth conditions of a specific organism, it is important to have a complete understanding of its MFA. This would allowed us to improve the processes for obtaining products of interest to human and also to understand how to manipulate the genome of a cell, allowing optimization process for genetic engineering. Streptomyces olindensis ICB20 is a promising producer of the antibiotic cosmomycin, a powerful antitumor drug. Several Brazilian researchers groups have been developing studies in order to optimize cosmomycin production in bioreactors. However, to the best of our knowledge, nothing has been done on metabolic fluxes analysis field. Therefore, the aim of this work is to identify several factors that can affect the metabolism of Streptomyces olindensis ICB20, through the metabolic flux analysis. As a result, the production of the secondary metabolite, cosmomycin, can be increased. To achieve this goal, a metabolic model was developed which simulates a distribution of internal cellular fluxes based on the knowledge of metabolic pathways, its interconnections, as well as the constraints of microorganism under study. The validity of the proposed model was verified by comparing the computational data obtained by the model with the experimental data obtained from the literature. Based on the analysis of intracellular fluxes, obtained by the model, an optimal culture medium was proposed. In addition, some key points of the metabolism of Streptomyces olindensis were identified, aiming to direct its metabolism to a greater cosmomycin production. In this sense it was found that by increasing the concentration of yeast extract, the culture medium could be optimized. Furthermore, the inhibition of the biosynthesis of fatty acids was found to be a interesting strategy for genetic manipulation. Based on the metabolic model, one of the optimized medium conditions was experimentally tested in order to demonstrate in vitro what was obtained in silico. It was found that by increasing the concentration of yeast extract in the culture medium would induce to an increase of the cosmomycin production
Resumo:
The Exception Handling (EH) is a widely used mechanism for building robust systems. In Software Product Line (SPL) context it is not different. As EH mechanisms are embedded in most of mainstream programming languages (like Java, C# and C++), we can find exception signalers and handlers spread over code assets associated to common and variable SPL features. When exception signalers and handlers are added to an SPL in an unplanned way, one of the possible consequences is the generation of faulty family instances (i.e., instances on which common or variable features signal exceptions that are mistakenly caught inside the system). In this context, some questions arise: How exceptions flow between the optional and alternative features an LPS? Aiming at providing answers to these questions, this master thesis conducted an exploratory study, based on code inspection and static analysis code, whose goal was to categorize the main ways which exceptions flow in LPSs. To support the study, we developed an static analysis tool called PLEA (Product Line Exception Analyzer) that calculates the exceptional flows of LPSs, and categorize these flows according to the features associated with handlers and signalers. Preliminary results showed that some types of exceptional flows have more potential to yield failures in exceptional behavior of SLPs
Resumo:
Graph Reduction Machines, are a traditional technique for implementing functional programming languages. They allow to run programs by transforming graphs by the successive application of reduction rules. Web service composition enables the creation of new web services from existing ones. BPEL is a workflow-based language for creating web service compositions. It is also the industrial and academic standard for this kind of languages. As it is designed to compose web services, the use of BPEL in a scenario where multiple technologies need to be used is problematic: when operations other than web services need to be performed to implement the business logic of a company, part of the work is done on an ad hoc basis. To allow heterogeneous operations to be part of the same workflow, may help to improve the implementation of business processes in a principled way. This work uses a simple variation of the BPEL language for creating compositions containing not only web service operations but also big data tasks or user-defined operations. We define an extensible graph reduction machine that allows the evaluation of BPEL programs and implement this machine as proof of concept. We present some experimental results.
Resumo:
VANTI, Nadia. Links hipertextuais na comunicação científica: análise webométrica dos sítios acadêmicos latino-americanos em Ciências Sociais. Porto Alegre, 2007. 292 f. Tese (Doutorado em Comunicação e Informação) – Universidade Federal do Rio Grande do Sul. Porto Alegre, 2007.
Resumo:
This study aims at solidifying the theoretical bases to provide, above all, an explanation for this phenomenon which currently happens, with a scenario of social, political, economic and cultural transformations worldwide in medium cities. Nevertheless, because it has different dimensions from its transformation axes, gentrification comes with change, but also with the introduction of a new purpose in the space using and occupation, outlining in this context the identity of places from the formation of centralities with the presence of flows with social and economic dynamicsThe current forms of geographic space appropriation show the directions of the senses and ideological profile which recreates the meanings and uses of content and materials from descriptions of a historical past. However, today there is an economic context in the urban space which refers to a search of strategies for change, i.e., the acquisition of parameter aimed at meeting the demands of the relationship between capital and labor, which ends up overriding some actions for the specification of the transformation methods within the urban space to be explained by new needs and also by the agents from the value adding to their interests and investments. Thus, we assume that the appreciation/gentrification of urban spaces may or may not result from the building of a public space, since the dialogic structure as a place of political interaction externalize conflicts and disagreements in general; it keeps segregating spaces. As new spaces are transformed, the access to them tends to happen with particular restriction, whereas some places like parks, shopping malls, high-rise and horizontal condos are the scene for major professional and family events. In this context, the gentrification process is used to designate interventions in the urban environment, in certain city spaces which are considered central to public and private investments. A historical place is permitted to be presented as a scenario, a stage full of attractions, through the transformation process. Studying gentrification consists of an analysis of the underlying interests in the transformation of these areas, and especially of the assessment of the interest level in the private sector to partner in order to modify the landscape. Gentrification results from the transformation processes of capital, which influences the efforts and investments application in order to establish and achieve optimal economic growth, focusing on a location socio-culturally centered in the urban space. Thus, the urban social structure develops in the light of some questions that relate not only the cities growth but also environmental conditions it provides in cities like Mossoro, State of Rio Grande do Norte, Brazil 2005 a 2011.
Resumo:
Considering that urban interventions, planned and executed recently at Natal, RN, should put Ribeira - one of the town centers - in the new limits of the expanded center of the city, this work examines the use of this new accessibility for the benefit of the development of an infrastructure to support a type of tourism currently seen as an alternative to diversification into areas dominated by entertainment tourism (the case of Natal). A local with city's traditional cultural facilities and holder of a set built that is a synthesis of the images of the neighborhood, it fears that this increase in the potential for movement and flows of use stimulate speculation and deployment of a bulk type of activity incompatible with the preservation the architectural heritage. Important economy for the city, tourism has been showing a factor propellant processing urban related changes in accessibility. It is argued that cultural tourism, often used in plans and projects of revitalization across the country, may be factor for sustainable development and conserve the assets, and contributes to the process of revitalization of the historic cultural center as Ribeira. Intended to illustrate the need to consider other information that might help in the revitalization of the neighborhood, this research presents the offer cultural tourism of Ribeira and identifies and maps certain physical attributes that, combined with functional attributes, can stimulate or inhibit the diversity and vitality in the region
Resumo:
Building design is an effective way to achieve HVAC energy consumption reduction. However, this potentiality is often neglected by architects due to the lack of references to support design decisions. This works intends to propose architectural design guidelines for energy efficiency and thermal performance of Campus/UFRN buildings. These guidelines are based on computer simulations results using the software DesignBuilder. The definition of simulation models has begun with envelope variables, partially done after a field study of thirteen buildings at UFRN/Campus. This field study indicated some basic envelope patterns that were applied in simulation models. Occupation variables were identified with temperature and energy consumption monitoring procedures and a verification of illumination and equipment power, both developed at the Campus/UFRN administration building. Three simulation models were proposed according to different design phases and decisions. The first model represents early design decisions, simulating the combination of different types of geometry with three levels of envelope thermal performance. The second model, still as a part of early design phase, analyses thermal changes between circulation halls lateral and central and office rooms, as well as the heat fluxes and monthly temperatures in each circulation hall. The third model analyses the influence of middle-design and detail design decisions on energy consumption and thermal performance. In this model, different solutions of roofs, shading devices, walls and external colors were simulated. The results of all simulation models suggest a high influence of thermal loads due to the incidence of solar radiation on windows and surfaces, which highlights the importance of window shading devices, office room orientation and absorptance of roof and walls surfaces
Resumo:
João Pessoa, the capital city of the state of Paraíba (Northeast Brazil), is reputed throughout the country as a quiet place, although it has been acquiring, over the past years, an urban character with social implications similar to those of major metropolitan Brazilian areas. The new situation is evident by the social inequalities, with the creation of confined spaces, which segregate and cause enclosure of the inhabitants, leading to death the public space. This study correlates accessibility in spatial structure with two types of crime data, burglary and robbery, recorded in 2008 and 2009, by the Secretaria de Segurança da Paraíba (The government agency public in charge of safety), in the district of Manaíra, an upper middle class neighborhood, which has, in recent times, been considered one of the most violent areas in João Pessoa. Sought to understand connections between these events and morpho-social aspects of the built environment, where examined the spatial properties, such as accessibility of the urban net, the presence of control measures, the safety of buildings and their uses. Spatial properties were also validated by the observation of pedestrian flows at strategic points of the study area. It was concluded that the presence of intense flows helps to attract potential thieves, physical security and control offers little protection
Resumo:
This study reviews the spatial configuration from the road network of an urban compound formed by the cities of Crato, Juazeiro do Norte and Barbalha (the Crajubar - core of the Cariri metropolitan region, in the State of Ceará, Brazil), in order to establish nexus (or relations) between different levels of accessibility and the formation/ transformation and specialization of centralities in local and metropolitan scales. Stemming from the Social Logic of Space theoretical and operational apparatus, the study explores modeling possibilities (with axial lines, segments and lines of continuity) which is then confronted to empirical observations concerning movement flows and land use, within a Geographic Information System database. At different scales of analysis, the results suggest evidences of continuity were found in the permanence of intra-urban centres and sub-centres within each town, whereas evidences of change pointed out to the formation of a new centrality of metropolitan magnitude in the neighbourhood referred to as the Triângulo, in the municipality of Juazeiro, where high levels of topological accessibility coincides with the appearance of new business buildings as well as with the emergence of urban equipment of a scale more adequate to meet a regional demand
Influência das espécies ativas na absorção de intersticiais durante a carbonitretação a plasma do TI
Resumo:
Physical-chemical properties of Ti are sensible to the presence of interstitial elements. In the case of thermochemical treatments plasma assisted, the influence of different active species is not still understood. In order to contribute for such knowledge, this work purposes a study of the role played by the active species atmosphere into the Ar N2 CH4 carbonitriding plasma. It was carried out a plasma diagnostic by OES (Optical Emission Spectroscopy) in the z Ar y N2 x CH4 plasma mixture, in which z, y and x indexes represent gas flow variable from 0 to 4 sccm (cm3/min). The diagnostic presents abrupt variations of emission intensities associated to the species in determined conditions. Therefore, they were selected in order to carry out the chemical treatment and then to investigate their influences. Commercial pure Ti disks were submitted to plasma carbonitriding process using pre-established conditions from the OES measurements while some parameters such as pressure and temperature were maintained constant. The concentration profiles of interstitial elements (C and N atoms) were determined by Resonant Nuclear Reaction Analysis (NRA) resulting in a depth profile plots. The reactions used were 15N(ρ,αγ)12C and 12C(α,α)12C. GIXRD (Grazing Incidence X-Ray Diffraction) analysis was used in order to identify the presence of phases on the surface. Micro-Raman spectroscopy was used in order to qualitatively study the carbon into the TiCxN1 structure. It has been verified which the density species effectively influences more the diffusion of particles into the Ti lattice and characteristics of the layer formed than the gas concentration. High intensity of N2 + (391,4 nm) and CH (387,1 nm) species promotes more diffusion of C and N. It was observed that Hα (656,3 nm) species acts like a catalyzer allowing a deeper diffusion of nitrogen and carbon into the titanium lattice.
Resumo:
Titanium nitride films were grown on glass using the Cathodic Cage Plasma Deposition technique in order to verify the influence of process parameters in optical and structural properties of the films. The plasma atmosphere used was a mixture of Ar, N2 and H2, setting the Ar and N2 gas flows at 4 and 3 sccm, respectively and H2 gas flow varied from 0, 1 to 2 sccm. The deposition process was monitored by Optical Emission Spectroscopy (OES) to investigate the influence of the active species in plasma. It was observed that increasing the H2 gas flow into the plasma the luminescent intensities associated to the species changed. In this case, the luminescence of N2 (391,4nm) species was not proportional to the increasing of the H2 gas into the reactor. Other parameters investigated were diameter and number of holes in the cage. The analysis by Grazing Incidence X-Ray Diffraction (GIXRD) confirmed that the obtained films are composed by TiN and they may have variations in the nitrogen amount into the crystal and in the crystallite size. The optical microscopy images provided information about the homogeneity of the films. The atomic force microscopy (AFM) results revealed some microstructural characteristics and surface roughness. The thickness was measured by ellipsometry. The optical properties such as transmittance and reflectance (they were measured by spectrophotometry) are very sensitive to changes in the crystal lattice of the material, chemical composition and film thicknesses. Therefore, such properties are appropriate tools for verification of this process control. In general, films obtained at 0 sccm of H2 gas flow present a higher transmittance. It can be attributed to the smaller crystalline size due to a higher amount of nitrogen in the TiN lattice. The films obtained at 1 and 2 sccm of H2 gas flow have a golden appearance and XRD pattern showed peaks characteristics of TiN with higher intensity and smaller FWHM (Full Width at Half Maximum) parameter. It suggests that the hydrogen presence in the plasma makes the films more stoichiometric and becomes it more crystalline. It was observed that with higher number of holes in the lid of the cage, close to the region between the lid and the sample and the smaller diameter of the hole, the deposited film is thicker, which is justified by the most probability of plasma species reach effectively the sample and it promotes the growth of the film
Resumo:
Interstitial compounds of titanium have been mainly studied due to the large range of properties acquired when C, N, O and H atoms are added. In this work, surfaces of TiCxNy were produced by thermochemical treatments assisted by plasma with different proportions of Ar + N2 + CH4 gas mixture. The Ar gas flow was fixed in 4 sccm, varying only N2 and CH4 gas flows. During the thermochemical treatment, the plasma was monitored by Optical Emission Spectroscopy (OES) for the investigation of the influence of active species. After treatments, C and N concentration profile, crystalline and amorphous phases were analyzed by Nuclear Reaction (NRA). Besides tribomechanical properties of the Ti surface were studied through the nanohardness measurements and friction coefficient determination. The worn areas were evaluated by profilometry and Scanning Electronic Microscope (SEM) in order to verify the wear mechanism present in each material. It has been seen which the properties like nanohardness and friction coefficient have strong relation with luminous intensity of species of the plasma, suggesting a using of this characteristic as a parameter of process
Resumo:
Metal substrates were coated by thermal spraying plasma torch, they were positioned at a distance of 4 and 5 cm from the nozzle exit of the plasma jet. The starting materials were used for deposition of tantalum oxide powder and aluminium. These two materials were mixed and ground into high-energy mill, then immersed in the torch for the production of alumina coating infused with particles of tantalum with nano and micrometric size. The spraying equipment used is a plasma torch arc not transferred, which operating in the range of 250 A and 80 V, was able to produce enough heat to ignite aluminothermic between Ta2O5 and aluminum. Upon reaching the plasma jet, the mixing powders react with the heat of the blaze, which provides sufficient energy for melting aluminum particles. This energy is transferred through mechanisms of self-propagating to the oxide, beginning a reduction reaction, which then hits on the surface of the substrate and forms a coating on which a composite is formed by a junction metal - ceramic (Ta +Al2O3). The phases and quantification of each were obtained respectively by X-ray diffraction and the Rietveld method. Morphology by scanning electron microscopy and chemical analysis by energy dispersive spectroscopy EDS. It was also performed measurements of the substrate roughness, Vickers microhardness measurements in sprays and determination of the electron temperature of the plasma jet by optical emission spectroscopy EEO. The results confirmed the expectation generated around the end product of spraying the mixture Ta2O5 + Al, both in the formation of nano-sized particles and in their final form. The electron excitation temperature was consistent with the purpose of work, in addition, the thermodynamic temperature was efficient for the reduction process of Ta2O5. The electron excitation temperature showed values of 3000, 4500 and 8000 K for flows10, 20 and 30 l / min respectively, these values were taken at the nozzle exit of the plasma jet. The thermodynamic temperature around 1200 ° C, was effective in the reduction process of Ta2O5
Resumo:
Plasma diagnostics by Optical Emission Spectroscopy were performed for electrical discharge in three gas mixture respecting the combinations z N2 y Ar x H2, z N2 y Ar x O2 e z N2 y Ar x CH4, in which the indexes z and y systematically vary from 1 to 4 and x varies from 0 to 4, every one has dimension SCCM, resulting in 80 combinations. From the all obtained spectrums, the species CH (387,1 nm), N2+ (391,4 nm), Hβ (486,1 nm), Hα (656,3 nm), Ar (750,4 nm), O (777,4 nm) e O (842,6 nm) were analyzed because of their abundance and importance on the kinetic of reaction from the plasma to surface, besides their high dependences on the gases flows. Particularly interesting z, y and x combinations were chosen in order to study the influence of active species on the surface modification during the thermochemical treatment. From the mixtures N2 Ar O2 e N2 Ar CH4 were chosen three peculiar proportions which presented luminous intensity profile with unexpected maximum or minimum values, denominated as plasma anomaly. Those plasma concentrations were utilized as atmosphere of titanium treatment maintaining constant the control parameters pressure and temperature. It has been verified a relation among luminous intensity associated to N2+ and roughness, nanohardness and O atoms diffusion into the crystalline lattice of treated titanium and it has been seen which those properties becomes more intense precisely in the higher points found in the optical profile associated to the N2+ specie. Those parameters were verified for the mixture which involved O2 gas. For the mixture which involves CH4 gas, the relation was determinate by roughness, number of nitrogen and carbon atoms diffused into the titanium structure which presented direct proportionality with the luminous intensity referent to the N2+ and CH. It has been yet studied the formation of TiCN phases on the surface which presented to be essentially directly proportional to the increasing of the CH specie and inversely proportional to the increasing of the specie N2+
Resumo:
The technique of surface coating using magnetron sputtering is one of the most widely used in the surface engineering, for its versatility in obtaining different films as well as in the micro / nanometric thickness control. Among the various process parameters, those related to the active species of the plasma are of the most fundamental importance in the mechanism and kinetics of deposition. In order to identify the active species of the plasma, parameters such as gas flow, pressure and density of electric power were varied during titanium coating on glass substrate. By flowing argon gas of 10, 20, 30, 40 and 50 sccm (cubic centimeters per minute) for each gas flow a sequential scan of the electric current of 0.10, 0.20, 0.30, 0.40 , 0.50 A. The maximum value of 0.50 A was chosen based both on literature data and on limitations of the equipment. The monitoring of plasma species present during the deposition was carried out in situ by the technique of optical emission spectroscopy (OES) through the spectrometer Ocean Optics USB2000 Series. For this purpose, an apparatus was developed to adapt the OES inside the plasma reactor to stay positioned closest to the target. The radiations emitted by the species were detected by an optical fiber placed behind the glass substrate and their intensities as a function of wavelength were, displayed on a monitor screen. The acquisition time for each condition of the plain parameters was related to the minima of spectral lines intensities due to the film formed on the substrate. The intensities of different emission lines of argon and titanium were then analyzed as a function of time, to determine the active species and estimate the thickness of the deposited films. After the deposition, the coated glasses thin films were characterized by optical transmittance through an infrared laser. It was found that the thickness and deposition rate determined by in situ analysis were consistent with the results obtained by laser transmittance