2 resultados para Flory-Huggins theory

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The nonionic surfactants are composed of substances whose molecules in solution, does not ionize. The solubility of these surfactants in water due to the presence of functional groups that have strong affinity for water. When these surfactants are heated is the formation of two liquid phases, evidenced by the phenomenon of turbidity. This study was aimed to determine the experimental temperature and turbidity nonilfenolpoliethoxyled subsequently perform a thermodynamic modeling, considering the models of Flory-Huggins and the empirical solid-liquid equilibrium (SLE). The method used for determining the turbidity point was the visual method (Inoue et al., 2008). The experimental methodology consisted of preparing synthetic solutions of 0,25%, 0,5%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 12,5%, 15%, 17% and 20% by weight of surfactant. The nonionic surfactants used according to their degree of ethoxylation (9.5, 10, 11, 12 and 13). During the experiments the solutions were homogenized and the bath temperature was gradually increased while the turbidity of the solution temperature was checked visually Inoue et al. (2003). These temperature data of turbidity were used to feed the models evaluated and obtain thermodynamic parameters for systems of surfactants nonilfenolpoliethoxyled. Then the models can be used in phase separation processes, facilitating the extraction of organic solvents, therefore serve as quantitative and qualitative parameters. It was observed that the solidliquid equilibrium model (ESL) was best represented the experimental data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The nonionic surfactants when in aqueous solution, have the property of separating into two phases, one called diluted phase, with low concentration of surfactant, and the other one rich in surfactants called coacervate. The application of this kind of surfactant in extraction processes from aqueous solutions has been increasing over time, which implies the need for knowledge of the thermodynamic properties of these surfactants. In this study were determined the cloud point of polyethoxylated surfactants from nonilphenolpolietoxylated family (9,5 , 10 , 11, 12 and 13), the family from octilphenolpolietoxylated (10 e 11) and polyethoxylated lauryl alcohol (6 , 7, 8 and 9) varying the degree of ethoxylation. The method used to determine the cloud point was the observation of the turbidity of the solution heating to a ramp of 0.1 ° C / minute and for the pressure studies was used a cell high-pressure maximum ( 300 bar). Through the experimental data of the studied surfactants were used to the Flory - Huggins models, UNIQUAC and NRTL to describe the curves of cloud point, and it was studied the influence of NaCl concentration and pressure of the systems in the cloud point. This last parameter is important for the processes of oil recovery in which surfactant in solution are used in high pressures. While the effect of NaCl allows obtaining cloud points for temperatures closer to the room temperature, it is possible to use in processes without temperature control. The numerical method used to adjust the parameters was the Levenberg - Marquardt. For the model Flory- Huggins parameter settings were determined as enthalpy of the mixing, mixing entropy and the number of aggregations. For the UNIQUAC and NRTL models were adjusted interaction parameters aij using a quadratic dependence with temperature. The parameters obtained had good adjust to the experimental data RSMD < 0.3 %. The results showed that both, ethoxylation degree and pressure increase the cloudy points, whereas the NaCl decrease