103 resultados para Fibra de borracha

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

70.00% 70.00%

Publicador:

Resumo:

This work aims to demonstrate the feasibility of a ceramic composite containing fiber in the rubber manufacturing interlocking blocks. Gravel, sand, cement, rubber and fiber: the processes of manufacture and assembly of blocks produced and the various formulations studied with different proportions between the constituent elements were addressed. Mechanical properties were determined for the different formulations, compressive strength, diametral compressive strength, water absorption and apparent density, obeying the rules related to each property. It was concluded that the addition of rubber fiber gave the concrete studied resistance lower than conventional concrete which can be verified on the microstructural analysis obtained by SEM, which revealed the presence of pores and the low adhesion between the fiber and the matrix compression (tire fiber / cement paste). The composite of more viable tire BCPB1 (1/2) fiber can be used in places requests as light squares, pavements, roads and other cycle as well as in the manufacture of the curb and gutter, by having compressive strength in about 20 MPa

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The development of composite materials encompasses many different application areas. Among the composites, it is had, especially, the materials of organic origin, which have the greatest potential for biodegradability and so, have been bringing relevance and prominence in the contemporary setting of environmental preservation and sustainable development. Following this perspective of ecological appeal, it was developed a biocomposite material with natural inputs typically brazilian. This composite was made from latex (natural rubber) and carnauba fiber in different mass proportions. Formulations had varied by 5%, 10%, 15% and 20% of fiber in relation the matrix. This material has been designed aiming at application in thermal insulation systems, which requirethermal protection surfaces and/or reduction of thermal energy loss. Therefore, the composite was characterized by thermal conductivity testing, specific heat, thermal diffusivity and thermogravimetry. As has also been characterized for their physical-mechanical, by testing density, moisture content, tensile strength, hardness and scanning electron microscopy (SEM). The characterization of the material revealed that the composite presents a potential of thermal insulation higher than the natural rubber, that was used as reference. And the formulation at 15% fiber in relation the matrix showed the best performance. Thus, the composite material in question presents itself as a viable and effective alternative for new thermal insulation material design.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The development of composite materials encompasses many different application areas. Among the composites, it is had, especially, the materials of organic origin, which have the greatest potential for biodegradability and so, have been bringing relevance and prominence in the contemporary setting of environmental preservation and sustainable development. Following this perspective of ecological appeal, it was developed a biocomposite material with natural inputs typically brazilian. This composite was made from latex (natural rubber) and carnauba fiber in different mass proportions. Formulations had varied by 5%, 10%, 15% and 20% of fiber in relation the matrix. This material has been designed aiming at application in thermal insulation systems, which requirethermal protection surfaces and/or reduction of thermal energy loss. Therefore, the composite was characterized by thermal conductivity testing, specific heat, thermal diffusivity and thermogravimetry. As has also been characterized for their physical-mechanical, by testing density, moisture content, tensile strength, hardness and scanning electron microscopy (SEM). The characterization of the material revealed that the composite presents a potential of thermal insulation higher than the natural rubber, that was used as reference. And the formulation at 15% fiber in relation the matrix showed the best performance. Thus, the composite material in question presents itself as a viable and effective alternative for new thermal insulation material design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aims to compare the thermal performance of tiles made from recycled material (waste packaging cardboard with aluminized film) with the tiles of fiber and bitumen, fiber cement and red ceramic with the aim of verifying the suitability of tile to be used in hot and humid climate of low latitude. The samples were selected according to the availability from Natal - RN market, as they are sold to the consumers. The methodology was based on studies that used experimental apparatus composed of thermal chambers heated by banks of incandescent bulbs, to analyze the thermal performance of materials. The tiles in the study were submitted to analysis of thermal performance, thermophysical properties and absorptance, using chambers of thermal performance, measuring the thermophysical properties and portable spectrometer, respectively. Comparative analysis of thermal performance between two samples of the recycled material with dimple sizes and different amounts of aluminum were made, in order to verify, if these characteristics had some interference on the thermal performance of them; the results showed no significant performance differences between the samples. The data obtained in chambers of thermal performance and confirmed by statistical analysis, showed, that the tile of recycled material have similar thermal performance to the tile of fiber cement. In addition to these tests was carried out the automatic monitoring of a building covered with tiles of recycled material, to verify its thermal performance in a real situation. The results showed that recycled shingles must be used with technical criteria similar to those used for fiber cement tiles, with regard to the heat gain into the building. Within these criteria should be taken into account local characteristics, especially in regions with hot and humid climate, and its use must be associated, according to the literature, to elements of thermal insulation and use of passive techniques such as vented attics, ceilings and right foot higher

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although already to exist alternative technique and economically viable for destination of used tires, quantitative data on properties of constructive elements that use the rubber waste as aggregate still are restricted. In the present work, the waste proceeding from industry of retreading as material for manufacture of composite destined to the production of constructive elements was considered. Mechanical and thermal properties of mortar had been analyzed Portland cement with addition of waste without treatment, in the ratios of 10%, 20% and 30% in mass in relation to the mass of the cement, substituting the aggregate in the trace in mortar 1:5 mass cement and sand. The size of the used residue varied between 0,30mm and 4,8mm (passing in the bolter 4,8mm and being restrained in the one of 0,30mm), being it in the formats fibers and granular. The influences of the size and the percentage of residue added to the mortar (in substitution to the aggregate) in the thermal and mechanical properties had been considered. Assays of body-of-test in thestates had been become fullfilled cool (consistency index) and hardened (absorption of water for capillarity, strength the compression, traction and strength flexural). The work is centralized in the problem of the relation thermal performance /strength mechanics of used constructive systems in regions of low latitudes (Been of the Piauí), characterized for raised indices of solar radiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nowadays the environmental issues are increasingly highlighted since the future of humanity is dependent on the actions taken by man. Major efforts are being expended in pursuit of knowledge and alternatives to promote sustainable development without compromising the environment. In recent years there has been a marked growth in the development of reinforced composite fiber plants, as an alternative for economic and ecological effects, especially in the substitution of synthetic materials such as reinforcement material in composites. In this current study the chemical- physical or (thermophysics )characteristics of the babassu coconut fiber, derived from the epicarp of the fruit (Orbignyda Phalerata), which the main constituents of the fiber: Klason lignin, insoluble, cellulose, holocellulose, hemicellulose and the content of ash and moisture will be determined. A study was conducted about the superficial modification of the fibers of the epicarp babassu coconut under the influence of chemical treatment by alkalinization, in an aqueous solution of NaOH to 2.5% (m/v) and to 5.0% to improve the compatibility matrix / reinforcement composite with epoxy matrix. The results of the changes occurred in staple fibers through the use of the techniques of thermogravimetric analyses (TG) and differential scanning calorimetry (DSC). The results found on thermal analysis on samples of fiber without chemical treatment (alkalinities), and on fiber samples treated by alkalinization show that the proposed chemical treatment increases the thermal stability of the fibers and provides a growth of the surface of area fibers, parameters that enhance adhesion fiber / composite. The findings were evaluated and compared with published results from other vegetable fibers, showing that the use of babassu coconut fibers has technical and economic potential for its use as reinforcement in composites

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research is about the use of the coconut´s endocarp (nucifera linn) and the waste of derivatives of wood and furniture as raw material to technological use. In that sense, the lignocellulosic waste is used for manufacture of homogeneous wood sheet agglomerate (LHWS) and lignocellulosic load which take part of a polymeric composite with fiber glass E (GFRP-WC). In the manufacturing of the homogeneous wood sheet agglomerate (LHWS), it was used mamona´s resin as waste s agglutinating element. The plates were taken up in a hydraulic press engine, heated, with temperature control, where they were manufactured for different percentage of waste wood and coconuts nucífera linn. Physical tests were conducted to determine the absorption of water, density, damp grade (in two hours and twenty-four hours), swelling thickness (in two hours and twenty-four hours), and mechanical tests to evaluate the parallel tensile strength (internal stick) and bending and the static (steady) flexural. The physical test´s results indicate that the LHWS can be classified as bonded wood plate of high-density and with highly water resistant. In the mechanical tests it was possible to establish that LHWS presents different characteristics when submitted to uniaxial tensile and to the static (steady) flexural, since brittle and elasticity module had a variation according to the amount of dry endocarp used to manufacture each trace of LHWS. The GFRP-WC was industrially manufactured by a hand-lay-up process where the fiber glass E was used as reinforcement the lignocellulósic´s waste as load. The matrix was made with ortofitalic unsaturated polyester resin. Physical and mechanical tests were performed in presence of saturated humidity and dry. The results indicated good performance of the GFRP-WC, as traction as in flexion in three points. The presence of water influenced the modules obtained in the flexural and tensile but there were no significant alteration in the properties analyzed. As for the fracture, the analysis showed that the effects are more harmful in the presence of damp, under the action of loading tested, but despite this, the fracture was well defined starting in the external parts and spreading to the internal regions when one when it reaches the hybrid load

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to the occurrence of diseases in the use of structural reinforcements in composites, with presentation of concrete blanket detachment, has been identified the need to evaluate the performance of concrete reinforced with glass fiber. This study aims to evaluate these concretes by means of testing methodologies, using concrete with low resistance with structural reinforcement for confinement by preimpregnated glass fiber and traditional fiberglass blanket. The first stage of work was the development of methodologies for analysis, opting for four types, such as the acoustic survey, strength to compressive, the pull-off and ultrasound. Next, tests were carried out using the four selected methodologies in 30 of proof-of-specimens by 5x10 cm, 15 were reinforced with the traditional fiberglass blanket with 5specimens exposed to test a marine environment of marine coastline of Natal-RN and 15 were reinforced with a pre-impregnated glass fiber blanket, as well as 5specimens exposed to a test environment of the marine coastline of Natal-RN. After conducting the acoustic survey, it has been verified a lack of delaminating and air bubbles in the samples, confirming the absence of gross shortcomings in the implementation of the ribs both the traditional fiberglass blanket and in the preimpregnated fiber glass blanket. After carrying out methods of pull-off and compressive strengthening test it was observed that the reinforced proof-bodies with pre-impregnated glass blanket showed maximum stresses higher than the traditional fiberglass blanket; consequently a greater grip with the formation of a smaller area of . fracture, unlike traditional glass mat, which showed lower maximum stresses, with a greater area of fracture. It was also found that the traditional fiberglass blanket presented detachment of blanket-concrete interface, unlike the pre-impregnated fiberglass blanket, which showed a better grip on the blanket-concrete interface. In the trial of ultrasound there was no presence of cracks in the blanket-concrete interface, yielding to both blankets good compactness of the concrete. At the end of this work, they were developed and proposed two methods of testing for evaluation of reinforced concrete structures with composites, for standardization, the acoustic survey and pull-off

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The research and development of wind turbine blades are essential to keep pace with worldwide growth in the renewable energy sector. Although currently blades are typically produced using glass fiber reinforced composite materials, the tendency for larger size blades, particularly for offshore applications, has increased the interest on carbon fiber reinforced composites because of the potential for increased stiffness and weight reduction. In this study a model of blade designed for large generators (5 MW) was studied on a small scale. A numerical simulation was performed to determine the aerodynamic loading using a Computational Fluid Dynamics (CFD) software. Two blades were then designed and manufactured using epoxy matrix composites: one reinforced with glass fibers and the other with carbon fibers. For the structural calculations, maximum stress failure criterion was adopted. The blades were manufactured by Vacuum Assisted Resin Transfer Molding (VARTM), typical for this type of component. A weight comparison of the two blades was performed and the weight of the carbon fiber blade was approximately 45% of the weight of the fiberglass reinforced blade. Static bending tests were carried out on the blades for various percentages of the design load and deflections measurements were compared with the values obtained from finite element simulations. A good agreement was observed between the measured and calculated deflections. In summary, the results of this study confirm that the low density combined with high mechanical properties of carbon fibers are particularly attractive for the production of large size wind turbine blades

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of new materials to fill the demand of technological advances is a challenge for many researchers around the world. Strategies such as making blends and composites are promising alternatives to produce materials with different properties from those found in conventional polymers. The objective of this study is to evaluate the effect of adding the copolymer poly(ethylene methyl acrylate) (EMA) and cotton linter fibers (LB) on the properties of recycled poly(ethylene terephthalate) (PETrec) by the development of PETrec/EMA blend and PETrec/EMA/LB blend composite. In order to improve the properties of these materials were added as compatibilizers: Ethylene - methyl acrylate - glycidyl methacrylate terpolymer (EMA-GMA) and maleic anhydride grafted polyethylene (PE-g-MA). The samples were produced using a single screw extruder and then injection molded. The obtained materials were characterized by thermogravimetry (TG), melt flow index (MFI) mensurements, torque rheometry, pycnometry to determinate the density, tensile testing and scanning electron microscopy (SEM). The rheological results showed that the addition of the EMA copolymer increased the viscosity of the blend and LB reduces the viscosity of the blend composite. SEM analysis of the binary blend showed poor interfacial adhesion between the PETrec matrix and the EMA dispersed phase, as well as the blend composite of PETrec/EMA/LB also observed low adhesion with the LB fiber. The tensile tests showed that the increase of EMA percentage decreased the tensile strength and the Young s modulus, also lower EMA percentage samples had increased the elongation at break. The blend composite showed an increase in the tensile strength and in the Young`s modulus, and a decrease in the elongation at break. The blend formulations with lower EMA percentages showed better mechanical properties that agree with the particle size analysis which showed that these formulations presented a smaller diameter of the dispersed phase. The blend composite mechanical tests showed that this material is stronger and stiffer than the blend PETrec/EMA, whose properties have been reduced due to the presence of EMA rubbery phase. The use of EMA-GMA was effective in reducing the particle size of the EMA dispersed phase in the PETrec/EMA blend and PE-g-MA showed evidences of reaction with LB and physical mixture with the EMA

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Researches have shown that the introduction of rubber in concrete improves the features of its deformability, as well as contributes to environmental disposal of waste generated in the tire retreading process. Furthermore, there is a high availability of limestone within RN and CE country. Ignorance about this stone, does not allow its wide use as aggregate, leaving, this abundant supply idle. A composite of limestone gravel, with proportions of tire rubber waste which could be used as concrete would be an alternative to concrete for low applications. Therefore, this research aims to evaluate the characteristics of concrete containing limestone gravel and proportions of little aggregate replacement (sand) by tire rubber waste. To this goal, the material components of the concrete were characterized, concrete specimens with limestone gravel were made, from the dash 1.0: 2.5: 3.5, varying the water/cement ratio, and inserting a commercial plasticizer, without a proportion of residue, known as reference. From this, concrete with and without the presence of the additive in the same proportions were chosen, as well as these with the use of granite gravel, for being the most used. Selected the references, to these, replacements of little aggregate (sand) were added replaced by rubber waste from the tire retreading process, treated with 1M NaOH in proportions from 5.0 to 20.0 % by mass, cured and exposed to the semiarid environment. The results indicate the possibility of using limestone gravel in the concrete composition with workability correction using plasticizer. There was a decrease in the mechanical properties of the concrete with increments of waste rubber, but there is an improvement in toughness and deformability of the composite, which makes it interesting for the construction of non-structural concrete floors, as well as, the rubber waste delayed the hardening process, continuing to gain resistance after 28 days

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This master thesis aims at developing a new methodology for thermochemical degradation of dry coconut fiber (dp = 0.25mm) using laboratory rotating cylinder reactor with the goal of producing bio-oil. The biomass was characterized by infrared spectroscopy with Fourier transform FTIR, thermogravimetric analysis TG, with evaluation of activation energy the in non-isothermal regime with heating rates of 5 and 10 °C/min, differential themogravimetric analysis DTG, sweeping electron microscopy SEM, higher heating value - HHV, immediate analysis such as evaluated all the amounts of its main constituents, i.e., lignin, cellulose and hemicelluloses. In the process, it was evaluated: reaction temperature (450, 500 and 550oC), carrier gas flow rate (50 and 100 cm³/min) and spin speed (20 and 25 Hz) to condensate the bio-oil. The feed rate of biomass (540 g/h), the rotation of the rotating cylinder (33.7 rpm) and reaction time (30 33 min) were constant. The phases obtained from the process of pyrolysis of dry coconut fiber were bio-oil, char and the gas phase non-condensed. A macroscopic mass balance was applied based on the weight of each phase to evaluate their yield. The highest yield of 20% was obtained from the following conditions: temperature of 500oC, inert gas flow of 100 cm³/min and spin speed of 20 Hz. In that condition, the yield in char was 24.3%, non-condensable gas phase was 37.6% and losses of approximately 22.6%. The following physicochemical properties: density, viscosity, pH, higher heating value, char content, FTIR and CHN analysis were evaluated. The sample obtained in the best operational condition was subjected to a qualitative chromatographic analysis aiming to know the constituents of the produced bio-oil, which were: phenol followed by sirigol, acetovanilona and vinyl guaiacol. The solid phase (char) was characterized through an immediate analysis (evaluation of moisture, volatiles, ashes and fixed carbon), higher heating value and FTIR. The non-condensing gas phase presented as main constituents CO2, CO and H2. The results were compared to the ones mentioned by the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Currently, the oil industry is the biggest cause of environmental pollution. The objective was to reduce the concentration of copper and chromium in the water produced by the oil industry. It was used as adsorbent natural sisal fiber Agave sp treated with nitric acid and sodium hydroxide. All vegetable fibers have physical and morphological properties that enablies the adsorption of pollutants. The basic composition of sisal is cellulose, hemicellulose and lignin. The features are typically found in the characterization of vegetable fibers, except the surface area that was practically zero. In the first stage of adsorption, it was evaluated the effect of temperature and time skeeking to optimize the execution of the factorial design. The results showed that the most feasible fiber was the one treated with acid in five hours (30°C). The second phase was a factorial design, using acid and five hours, this time was it determined in the first phase. The tests were conducted following the experimental design and the results were analyzed by statistical methods in order to optimize the main parameters that influence the process: pH, concentration (mol / L) and fiber mass/ metal solution volume. The volume / mass ratio factor showed significant interference in the adsorption process of chromium and copper. The results obtained after optimization showed that the highest percentages of extraction (98%) were obtained on the following operating conditions: pH: 5-6, Concentration: 100 ppm and mass/ volume: 1 gram of fiber/50mL solution. The results showed that the adsorption process was efficient to remove chromium and copper using sisal fibers, however, requiring further studies to optimize the process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this thesis is to study the theory of production as it relates to and focuses on the strategy of production and competitiveness. The theory utilized was based on Terry Hill s Strategies through the utilization of Matrix of Manufacturing Strategy Issues and supported by the studies of others in this area. The methodology used for the development of this study was based on observing the engagement between two companies over a long period of time. Through interviews and discussions it was possible to collect the necessary information to guide this study; and by constant involvement in each of these companies, their ways of thinking, performing and administrating were observed and understood. In conclusion, this work created an understanding of the importance of the strategy of production, not as the only important element but as an important factor to direct attitudes and decisions in the company under the concept of strategy and competitiveness

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main purpose of this dissertation, consists of the study and analysis of the PBG (Photonic Band Gap )..tecnology incorporated in optical fiber structures. So, we'l1 present a complete PBG structure theory, and folowing this, we'l1 present also a chapter for convencional optical fiber, due to the need to construct the base theory of them, and latter a more complete work about photonic crystal fiber. Finaly, we'l1 show the results of the signals , dispersion, and obtained curves under the right dimensions according to the required signals, for convencional optical and photonic crystal fiber. Knowing that PBG crystals with low losses act as perfect mirrors for forbidden frequences and knowing that the persence of structures of PBG as substrates, brings some desirable characteristics such as spontaneous emition supression and superficial waves. We' 11 show according to these characteristics its applications in telecomunication. Therefore, the enphasis of this work is to show that the optical fibers are the only practible thing to integrate the enormous quantity of data and video at intemet' s market, developing, manipulating, changing, and multiplexing the optical fibers chanels in an area where we expect that the photonic crystals has an important hole, since the photonic crystals can be projected and made to avoid losses in the bands of certain wavelength which permits the increase in efficiency ofthe optical components projected with crystals. A sequence of this work would be the utilisation of the PBG structures in the new system of optical network without fiber developed by Bell laboratories of the lucent tecnology, last year using light rays for transmiting information through the air. The new system of optical networks without fiber will permit sending the data of 15 cd-rooms in less then one second, what represents 65 times more information than those transmitted through the actual radio frequences