2 resultados para Ferrugem alaranjada
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The Brazilian caatinga is characterized by low annual rainfall and arid soils. Several cactaceae, either native or adapted species, grow in this semi-arid region, including the prickly pear (Opuntia fícus indica) and facheiro ((Philosocereus pachycladus Ritter) which produce underexploited edible fruits. In addition to these species, the algaroba is a leguminous with little studied technological applications and bioactive potential so far. Therefore, this research aims to investigate the physicochemical, bioactive and functional attributes of the prickly pear and facheiro fruit pulps and the algaroba flour. Specifically, this study approaches the physicochemical characterization, total phenolic compounds (TPC) and the betalain identification and quantification by HPLC-DAD-ESI-MS. It is also investigated the DPPH antioxidant capacity and the antienzymatic activities against alpha-amylase and alphaglucosidase of water and ethanolic extracts of these food material. In order to address their potential to be used as food ingredients, juice blends prepared with mixtures of cajá and prickly pear, biofilms with facheiro and cereal bars with algaroba flour were elaborated and analyzed. The prickly pear fruits presented low acidity and high sugar content when compared to facheiro. The Philosocereus pachycladus Ritter fruits had higher protein and ash content, but the algaroba flour was the species with higher protein and sugar content among all. The algaroba flour also presented outstanding food fiber content, which reveals its potentiality to be used as a natural intestinal regulator. The TPC of water and ethanol extracts ranged from 3.87 to 16.21 mg GAE/100g for algaroba flour, 79.24 to 110.20 GAE/ 100g for prickly pear and 412.23 to 539.14 mg GAE/100g for facheiro. The 70% (w/v) ethanol extract reached the highest DPPH antioxidant activity, which was linearly correlated to its high TPC content. In regard to the enzymatic inhibitory activities, the best performance was observed for the prickly pear extracts which presented a moderate inhibition for both investigated enzymes, but interestingly, no alpha-glucosidase inhibition was observed for facheiro extracts. This work shows, for the first time in the literature, the functional attributes of facheiro fruits, as well as the presence of betacianins and isobetanin in the pulp of this exotic fruit. When it comes to the food products developed here, the sensory attributes that better described the juice blend cajá-prickly pear were sweetness, acidity, color yellow-orange, body, turbidity and cajá flavor. The discriminative test applied for cereal bars produced with and without algaroba revealed that the texture was the only sensory attribute that differed (p<0.05) between these two samples. It was also observed that the addition of facheiro extracts did not influence the visual characteristics of the biofilms. Overall, this work unveils the physicochemical and bioactive attributes of these commercial and technologically underexploited species widely found in the Brazilian caatinga and presents alternatives for their rational use
Resumo:
The inefficiency of chemical pesticides to control phytopathogenic fungi in agriculture and the frequent incidence of human diseases caused by bacteria which are resistant to antibiotics lead to the search for alternative antimicrobial compounds. In this context, plant defensins are a promising tool for the control of both plant and human pathogenic agents. Plant defensins are cationic peptides of about 50 amino acid residues, rich in cysteine and whose tridimensional structure is considerably conserved among different plant species. These antimicrobial molecules represent an important innate component from plant defense response against pathogens and are expressed in various plant tissues, such as leaves, tubers, flowers, pods and seeds. The present work aimed at the evaluation of the antimicrobial activity of two plant defensins against different phytopathogenic fungi and pathogenic bacteria to humans. The defensin Drr230a, whose gene was isolated from pea (Pisum sativum), and the defensin CD1,whose gene was identified within coffee (Coffea arabica) transcriptome, were subcloned in yeast expression vector and expressed in Pichia pastoris. The gene cd1 was subcloned as two different recombinant forms: CD1tC, containing a six-histidine sequence (6xHis) at the peptide C-terminal region and CD1tN, containing 6xHis coding sequence at the N-terminal region. In the case of the defensin Drr230a, the 6xHis coding sequence was inserted only at the N-terminal region. Assays of the antimicrobial activity of the purified recombinant proteins rDrr230a and rCD1 against Phakopsora pachyrhizi, causal agent of soybean Asian rust, were performed to analyze the in vitro spore germination inhibition and disease severity caused by the fungus in planta. Both recombinant defensins were able to inhibit P. pachyrhizi uredospore germination, with no difference between the antimicrobial action of either CD1tC or CD1tN. Moreover, rDrr230a and rCD1 drastically reduced severity of soybean Asian rust, as demonstrated by in planta assays. In spite of the fact that rCD1 was not able to inhibit proliferation of the human pathogenic bacteria Staplylococcus aureus and Klebsiella pneumoniae, rCD1 was able to inhibit growth of the phytopathogenic fungus Fusarium tucumaniae, that causes soybean sudden death syndrome. The obtained results show that these plant defensins are useful candidates to be used in plant genetic engineering programs to control agriculture impacting fungal diseases.