3 resultados para Fatty acids - Metabolism

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

90.00% 90.00%

Publicador:

Resumo:

OBJECTIVES: To study the effect of short-chain fatty-acids on atrophy and inflammation of excluded colonic segments before and after the development of diversion colitis. INTRODUCTION: Diversion colitis is a chronic inflammatory process affecting the dysfunctional colon, possibly evolving with mucous and blood discharge. The most favored hypotheses to explain its development is short-chain fatty-acid deficiency in the colon lumen. METHODS: Wistar rats were submitted to colostomy with distal colon exclusion. Two control groups (A1 and B1) received rectally administered physiological saline, whereas two experimental groups (A2 and B2) received rectally administered short-chain fatty-acids. The A groups were prophylactically treated (5th to 40th days postoperatively), whereas the B groups were therapeutically treated (after post-operative day 40). The mucosal thickness of the excluded colon was measured histologically. The inflammatory reaction of the mucosal lamina propria and the lymphoid tissue response were quantified through established scores. RESULTS: There was a significant thickness recovery of the colonic mucosa in group B2 animals (p = 0.0001), which also exhibited a significant reduction in the number of eosinophilic polymorphonuclear cells in the lamina propria (p = 0.0126) and in the intestinal lumen (p = 0.0256). Group A2 showed no mucosal thickness recovery and significant increases in the numbers of lymphocytes (p = 0.0006) and eosinophilic polymorphonuclear cells in the lamina propria of the mucosa (p = 0.0022). CONCLUSION: Therapeutic use of short-chain fatty-acids significantly reduced eosinophilic polymorphonuclear cell numbers in the intestinal wall and in the colonic lumen; it also reversed the atrophy of the colonic mucosa. Prophylactic use did not impede the development of mucosal atrophy

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The β-proteobacterium Chromobacterium violaceum is a Gram-negative, free-living, saprophytic and opportunistic pathogen that inhabits tropical and subtropical ecosystems among them, in soil and water of the Amazon. It has great biotechnological potential, and because of this potential, its genome was completely sequenced in 2003. Genome analysis showed that this bacterium has several genes with functions related to the ability to survive under different kinds of environmental stresses. In order to understand the physiological response of C. violaceum under oxidative stress, we applied the tool of shotgun proteomics. Thus, colonies of C. violaceum ATCC 12472 were grown in the presence and absence of 8 mM H2O2 for two hours, total proteins were extracted from bacteria, subjected to SDS-PAGE, stained and hydrolysed. The tryptic peptides generated were subjected to a linear-liquid chromatography (LC) followed by mass spectrometer (LTQ-XL-Orbitrap) to obtain quantitative and qualitative data. A shotgun proteomics allows to compare directly in complex samples, differential expression of proteins and found that in C. Violaceum, 131 proteins are expressed exclusively in the control condition, 177 proteins began to be expressed under oxidative stress and 1175 proteins have expression in both conditions. The results showed that, under the condition of oxidative stress, this bacterium changes its metabolism by increasing the expression of proteins capable of combating oxidative stress and decreasing the expression of proteins related processes bacterial growth and catabolism (transcription, translation, carbon metabolism and fatty acids). A tool with of proteomics as an approach of integrative biology provided an overview of the metabolic pathways involved in the response of C. violaceum to oxidative stress, as well as significantly amplified understanding physiological response to environmental stress. Biochemical and "in silico" assays with the hypothetical ORF CV_0868 found that this is part of an operon. Phylogenetic analysis of superoxide dismutase, protein belonging to the operon also showed that the gene is duplicated in genome of C. violaceum and the second copy was acquired through a horizontal transfer event. Possibly, not only the SOD gene but also all genes comprising this operon were obtained in the same manner. It was concluded that C. violaceum has complex, efficient and versatile mechanisms in oxidative stress response

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Metabolic flux analysis (MFA) is a powerful tool for analyzing cellular metabolism. In order to control the growth conditions of a specific organism, it is important to have a complete understanding of its MFA. This would allowed us to improve the processes for obtaining products of interest to human and also to understand how to manipulate the genome of a cell, allowing optimization process for genetic engineering. Streptomyces olindensis ICB20 is a promising producer of the antibiotic cosmomycin, a powerful antitumor drug. Several Brazilian researchers groups have been developing studies in order to optimize cosmomycin production in bioreactors. However, to the best of our knowledge, nothing has been done on metabolic fluxes analysis field. Therefore, the aim of this work is to identify several factors that can affect the metabolism of Streptomyces olindensis ICB20, through the metabolic flux analysis. As a result, the production of the secondary metabolite, cosmomycin, can be increased. To achieve this goal, a metabolic model was developed which simulates a distribution of internal cellular fluxes based on the knowledge of metabolic pathways, its interconnections, as well as the constraints of microorganism under study. The validity of the proposed model was verified by comparing the computational data obtained by the model with the experimental data obtained from the literature. Based on the analysis of intracellular fluxes, obtained by the model, an optimal culture medium was proposed. In addition, some key points of the metabolism of Streptomyces olindensis were identified, aiming to direct its metabolism to a greater cosmomycin production. In this sense it was found that by increasing the concentration of yeast extract, the culture medium could be optimized. Furthermore, the inhibition of the biosynthesis of fatty acids was found to be a interesting strategy for genetic manipulation. Based on the metabolic model, one of the optimized medium conditions was experimentally tested in order to demonstrate in vitro what was obtained in silico. It was found that by increasing the concentration of yeast extract in the culture medium would induce to an increase of the cosmomycin production