7 resultados para Faltas internas

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

About 10% of faults involving the electrical system occurs in power transformers. Therefore, the protection applied to the power transformers is essential to ensure the continuous operation of this device and the efficiency of the electrical system. Among the protection functions applied to power transformers, the differential protection appears as one of the main schemes, presenting reliable discrimination between internal faults and external faults or inrush currents. However, when using the low frequency components of the differential currents flowing through the transformer, the main difficulty of the conventional methods of differential protection is the delay for detection of the events. However, internal faults, external faults and other disturbances related to the transformer operation present transient and can be appropriately detected by the wavelet transform. In this paper is proposed the development of a wavelet-based differential protection for detection and identification of external faults to the transformer, internal faults, and transformer energizing by using the wavelet coefficient energy of the differential currents. The obtained results reveal the advantages of using of the wavelet transform in the differential protection compared to conventional protection, since it provides reliability and speed in detection of these events.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents contributions in the detection and identication of faults in multilevel inverters through the study of the converters behavior under these operation conditions. Basically, the approached fault consists of an open-circuit in any switch of a three-level clamped diode inverter. The converter operation is characterized in the pre and post-fault states. A wave form behavior analysis of the pole voltage, phase current and dc-bus current is also done, which highlights characteristics that allow the detection of failure and, even, under favorable conditions, the identication of the faulty device. A compensation strategy of the approached fault (open-switch) is also investigated with the purpose of maintaining the driving system operational when a failure occurs. The proposed topology uses SCRs in parallel with the internal switches of the inverter, which allows, in some occasions, the full utilization of the dc-bus

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ART networks present some advantages: online learning; convergence in a few epochs of training; incremental learning, etc. Even though, some problems exist, such as: categories proliferation, sensitivity to the presentation order of training patterns, the choice of a good vigilance parameter, etc. Among the problems, the most important is the category proliferation that is probably the most critical. This problem makes the network create too many categories, consuming resources to store unnecessarily a large number of categories, impacting negatively or even making the processing time unfeasible, without contributing to the quality of the representation problem, i. e., in many cases, the excessive amount of categories generated by ART networks makes the quality of generation inferior to the one it could reach. Another factor that leads to the category proliferation of ART networks is the difficulty of approximating regions that have non-rectangular geometry, causing a generalization inferior to the one obtained by other methods of classification. From the observation of these problems, three methodologies were proposed, being two of them focused on using a most flexible geometry than the one used by traditional ART networks, which minimize the problem of categories proliferation. The third methodology minimizes the problem of the presentation order of training patterns. To validate these new approaches, many tests were performed, where these results demonstrate that these new methodologies can improve the quality of generalization for ART networks

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electric energy is essential to the development of modern society and its increasing demand in recent years, effect from population and economic growth, becomes the companies more interested in the quality and continuity of supply, factors regulated by ANEEL (Agência Nacional de Energia Elétrica). These factors must be attended when a permanent fault occurs in the system, where the defect location that caused the power interruption should be identified quickly, which is not a simple assignment because the current systems complexity. An example of this occurs in multiple terminals transmission lines, which interconnect existing circuits to feed the demand. These transmission lines have been adopted as a feasible solution to suply loads of magnitudes that do not justify economically the construction of new substations. This paper presents a fault location algorithm for multiple terminals transmission lines - two and three terminals. The location method is based on the use of voltage and current fundamental phasors, as well as the representation of the line through its series impedance. The wavelet transform is an effective mathematical tool in signals analysis with discontinuities and, therefore, is used to synchronize voltage and current data. The Fourier transform is another tool used in this work for extract voltage and current fundamental phasors. Tests to validate the location algorithm applicability used data from faulty signals simulated in ATP (Alternative Transients Program) as well as real data obtained from oscillographic recorders installed on CHESF s lines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In machining of internal threads, dedicated tools, known as taps, are needed for each profile type, diameter, and low cutting speed values are used when compared to main machining processes. This restriction in the cutting speed is associated with the difficulty of synchronizing the tool s rotation speed and feed velocity in the process. This fact restricts the flexibility and makes machining lead times longer when manufacturing of components with threads is required. An alternative to the constraints imposed by the tap is the thread milling with helical interpolation technique. The technique is the fusion of two movements: rotation and helical interpolation. The tools may have different configurations: a single edge or multiple edges (axial, radial or both). However, thread milling with helical interpolation technique is relatively new and there are limited studies on the subject, a fact which promotes challenges to its wide application in the manufacturing shop floor. The objective of this research is determine the performance of different types of tools in the thread milling with helical interpolation technique using hardened steel workpieces. In this sense, four tool configurations were used for threading milling in AISI 4340 quenched and tempered steel (40 HRC). The results showed that climb cut promoted a greater number of machined threads, regardless of tool configuration. The upcut milling causes chippings in cutting edge, while the climb cutting promotes abrasive wear. Another important point is that increase in hole diameter by tool diameter ratio increases tool lifetime

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work an algorithm for fault location is proposed. It contains the following functions: fault detection, fault classification and fault location. Mathematical Morphology is used to process currents obtained in the monitored terminals. Unlike Fourier and Wavelet transforms that are usually applied to fault location, the Mathematical Morphology is a non-linear operation that uses only basic operation (sum, subtraction, maximum and minimum). Thus, Mathematical Morphology is computationally very efficient. For detection and classification functions, the Morphological Wavelet was used. On fault location module the Multiresolution Morphological Gradient was used to detect the traveling waves and their polarities. Hence, recorded the arrival in the two first traveling waves incident at the measured terminal and knowing the velocity of propagation, pinpoint the fault location can be estimated. The algorithm was applied in a 440 kV power transmission system, simulated on ATP. Several fault conditions where studied and the following parameters were evaluated: fault location, fault type, fault resistance, fault inception angle, noise level and sampling rate. The results show that the application of Mathematical Morphology in faults location is very promising

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The performance of algorithms for fault location i n transmission lines is directly related to the accuracy of its input data. Thus, fa ctors such as errors in the line parameters, failures in synchronization of oscillographic recor ds and errors in measurements of voltage and current can significantly influence the accurac y of algorithms that use bad data to indicate the fault location. This work presents a new method ology for fault location in transmission lines based on the theory of state estimation in or der to determine the location of faults more accurately by considering realistic systematic erro rs that may be present in measurements of voltage and current. The methodology was implemente d in two stages: pre-fault and post- fault. In the first step, assuming non-synchronized data, the synchronization angle and positive sequence line parameters are estimated, an d in the second, the fault distance is estimated. Besides calculating the most likely faul t distance obtained from measurement errors, the variance associated with the distance f ound is also determined, using the errors theory. This is one of the main contributions of th is work, since, with the proposed algorithm, it is possible to determine a most likely zone of f ault incidence, with approximately 95,45% of confidence. Tests for evaluation and validation of the proposed algorithm were realized from actual records of faults and from simulations of fictitious transmission systems using ATP software. The obtained results are relevant to show that the proposed estimation approach works even adopting realistic variances, c ompatible with real equipments errors.