3 resultados para Facas
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Nowadays, in the plastic industry are used mills that accomplish the recycling of residues generated in the production of its components. These mills contain cut sheets that suffer accelerated wear, once they are submitted constantly to the tribologic efforts, decreasing its useful life. To reduce this problem, it s used noble steels or takes place superficial treatments. The ionic nitriding process presents some limitations related to the uniformity of the layer in pieces with complex geometry, committing its application in pieces as knives, head offices, engagements, etc. However, the new technique of nitriding in cathodic cage eliminates some problems, as the restrictions rings, inherent to the conventional ionic nitriding. In present work, was studied the use viabilization of steels less noble, as SAE 1020, SAE 4320 and SAE 4340, nitreded by two different techniques, to substitute the AISI 01 steels, usually used in the cut knifes fabrication, seeking to reduce the costs and at the sane time to increase the useful life of these knifes. The steel most viable was the SAE 4340, nitrided in cathodic cage, because it presented uniformity in thickness and in the hardness of the layer, besides of increased 58% in the average its useful life
Resumo:
Nowadays, in the plastic industry are used mills that accomplish the recycling of residues generated in the production of its components. These mills contain cut sheets that suffer accelerated wear, once they are submitted constantly to the tribologic efforts, decreasing its useful life. To reduce this problem, it s used noble steels or takes place superficial treatments. The ionic nitriding process presents some limitations related to the uniformity of the layer in pieces with complex geometry, committing its application in pieces as knives, head offices, engagements, etc. However, the new technique of nitriding in cathodic cage eliminates some problems, as the restrictions rings, inherent to the conventional ionic nitriding. In present work, was studied the use viabilization of steels less noble, as SAE 1020, SAE 4320 and SAE 4340, nitreded by two different techniques, to substitute the AISI 01 steels, usually used in the cut knifes fabrication, seeking to reduce the costs and at the sane time to increase the useful life of these knifes. The steel most viable was the SAE 4340, nitrided in cathodic cage, because it presented uniformity in thickness and in the hardness of the layer, besides of increased 58% in the average its useful life
Resumo:
The use of composite materials and alternative is being increased every day, as it becomes more widespread awareness that the use of renewable and not harmful to the environment is part of a new environmentally friendly model. Since its waste (primarily fiberglass) can not be easily recycled by the difficulty that still exists in this process, since they have two phases mixed, a polymeric matrix thermoset difficult to recycle because it is infusible and phase of fiber reinforcements. Thermoset matrix composites like Polyester + fiberglass pose a threat due to excessive discharge. Aiming to minimize this problem, aimed to reuse the composite Polyester + fiber glass, through the wastes obtained by the grinding of knifes and balls. These residues were incorporated into the new composite Polyester/Fiberglass for hot compression mold and compared tribological to composites with filler CaCO3, generally used as filler, targeting a partial replacement of CaCO3 by such waste. The composites were characterized by thermal analysis (TGA, DSC and DMA), by the surface integrity (roughness determination, contact angle and surface energy), mechanical properties (hardness) and tribological tests (wear and coefficient of dynamic friction) in order to evaluate the effect of loads and characterize these materials for applications that can take, in the tribological point of view since waste Polyester + fiberglass has great potential for replacement of CaCO3