24 resultados para Fabrication of cDNA Micoarrays
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Aim: To investigate the construction of cobalt-chromium removable partial dentures by commercial private dental laboratories. Methods: Ninety master casts for fabrication of cobalt-chromium removable partial dentures were obtained from three commercial laboratories randomly selected. Casts were assessed for dental arch treated, Kennedy classification, cast surveying, denture design information provided by the dentist, and mouth preparation (rest seat, guiding plane and retentive area). Dental technicians answered a questionnaire regarding qualification of assisted dentists, monthly number of framework castings, and use of dental surveyor. Mouth preparation was compared among laboratories using Kruskal-Wallis test (α=0.05). Results: The percentage of Kennedy class I was 16%, class II 19%, class III 56%, and class IV 9%. The majority of master cats (51%) examined was sent to dental laboratories without any design information and did not comply with ethical guidelines in the provision of RPD. Approximately half of the casts were considered “inappropriate” for guiding planes and retentive areas. One of the laboratories presented all casts “inappropriate” for rest seat distribution (p<0.001). Conclusions: Mouth preparation frequently failed for guiding planes, retentive areas and distribution of rest seats. It is necessary to provide students with adequate clinical experience at the dental school environment, which will actually be carried into the practice of dentistry.
Resumo:
Aim: To investigate the construction of cobalt-chromium removable partial dentures by commercial private dental laboratories. Methods: Ninety master casts for fabrication of cobalt-chromium removable partial dentures were obtained from three commercial laboratories randomly selected. Casts were assessed for dental arch treated, Kennedy classification, cast surveying, denture design information provided by the dentist, and mouth preparation (rest seat, guiding plane and retentive area). Dental technicians answered a questionnaire regarding qualification of assisted dentists, monthly number of framework castings, and use of dental surveyor. Mouth preparation was compared among laboratories using Kruskal-Wallis test (α=0.05). Results: The percentage of Kennedy class I was 16%, class II 19%, class III 56%, and class IV 9%. The majority of master cats (51%) examined was sent to dental laboratories without any design information and did not comply with ethical guidelines in the provision of RPD. Approximately half of the casts were considered “inappropriate” for guiding planes and retentive areas. One of the laboratories presented all casts “inappropriate” for rest seat distribution (p<0.001). Conclusions: Mouth preparation frequently failed for guiding planes, retentive areas and distribution of rest seats. It is necessary to provide students with adequate clinical experience at the dental school environment, which will actually be carried into the practice of dentistry.
Resumo:
STATEMENT OF PROBLEM: A number of methods have been described for the fabrication of complete dentures. There are 2 common ways to make conventional complete dentures: a traditional method and a simplified method. PURPOSE: The purpose of this study was to conduct a systematic review to compare the efficiency of simplified and traditional methods for the fabrication of complete dentures. MATERIAL AND METHODS: The review was conducted by 3 independent reviewers and included articles published up to December 2013. Three electronic databases were searched: MEDLINE-PubMed, The Cochrane Library, and ISI Web of Science. A manual search also was performed to identify clinical trials of simplified versus traditional fabrication of complete dentures. RESULTS: Six articles were classified as randomized controlled clinical trials and were included in this review. The majority of the selected articles analyzed general satisfaction, denture stability, chewing ability and function, comfort, hygiene, esthetics, speech function, quality of life, cost, and fabrication time. CONCLUSIONS: Although the studies reviewed demonstrate some advantages of simplified over traditional prostheses, such as lower cost and clinical time, good chewing efficiency, and a positive effect on the quality of life, the reports related the use of different simplified methods for the fabrication of complete dentures. Additional randomized controlled trials that used similar simplified techniques for the fabrication of complete dentures should be performed with larger sample sizes and longer follow-up periods.
Resumo:
MELO, Maxymme Mendes de ; PINHEIRO, Andrea Santos ; NASCIMENTO, R. M. ; MARTINELLI, Antonio Eduardo ; DUTRA, Ricardo Peixoto Suassuna ; MELO, Marcus Antônio de Freitas . Análise microestrutural de misturas cerâmicas de grês Porcelanato com adição de chamote de telhas cerâmicas. Cerâmica (São Paulo. Impresso), v. 55, p. 356-364, 2009
Resumo:
The Industry of the Civil Construction has been one of the sectors that most contribute to the pollution of the environment, due to the great amount of residues generated by the construction, demolition and the extraction of raw material. As a way of minimizing the environmental impacts generated by this industry, some governmental organizations have elaborated laws and measures about the disposal of residues from the building construction (CONAMA - resolution 307). This work has as objective the reutilization of residues compound of sand, concrete, cement, red bricks and blocks of cement and mortar for the production of red ceramic, with the objective of minimizing costs and environmental impacts. The investigated samples contained 0% to 50% of residues in weight, and they were sintered at temperatures of 950°C, 1000°C, 1050°C, 1100°C and 1150°C. After the sinterization, the samples were submitted to tests of absorption of water, linear retraction, resistance to bending, apparent porosity, specific density, XRD and SEM. Satisfactory results were obtained in all studied compositions, with the possible incorporation of up to 50% of residues in ceramic mass without great losses in the mechanical strength, giving better results to the incorporation of 30% of residues in the fabrication of ceramic parts, such as roofing tiles, bricks masonry and pierced bricks
Resumo:
Rio Grande do Norte State stands out as one great producer of structural clay of the brazilian northeastern. The Valley Assu ceramic tiles production stands out obtained from ilitics ball clays that abound in the region under study. Ceramics formulation and the design of experiments with mixture approach, has been applied for researchers, come as an important aid to decrease the number of experiments necessary to the optimization. In this context, the objective of this work is to evaluate the effects of the formulation, temperature and heating rate in the physical-mechanical properties of the red ceramic body used for roofing tile fabrication of the Valley Assu, using design of mixture experiments. Four clays samples used in two ceramics industry of the region were use as raw material and characterized by X-ray diffraction, chemical composition, differential thermal analysis (DTA), thermogravimetric analysis (TGA), particle size distribution analysis and plasticity techniques. Afterwards, they were defined initial molded bodies and made specimens were then prepared by uniaxial pressing at 25 MPa before firing at 850, 950 and 1050 ºC in a laboratory furnace, with heating rate in the proportions of 5, 10 e 15 ºC/min. The following tecnologicals properties were evaluated: linear firing shrinkage, water absorption and flexural strength. Results show that the temperature 1050 ºC and heating rate of 5 ºC/min was the best condition, therefore presented significance in all physical-mechanical properties. The model was accepted as valid based of the production of three new formulations with fractions mass diferents of the initial molded bodies and heated with temperature at 1050 ºC and heating rate of 5 ºC/min. Considering the formulation, temperature and heating rate as variables of the equations, another model was suggested, where from the aplication of design of experiments with mixtures was possible to get a best formulation, whose experimental error is the minor in relation to the too much formulations
Resumo:
The characteristic properties of the fractal geometry have shown to be very useful for the construction of filters, frequency selective surfaces, synchronized circuits and antennas, enabling optimized solutions in many different commercial uses at microwaves frequency band. The fractal geometry is included in the technology of the microwave communication systems due to some interesting properties to the fabrication of compact devices, with higher performance in terms of bandwidth, as well as multiband behavior. This work describes the design, fabrication and measurement procedures for the Koch quasi-fractal monopoles, with 1 and 2 iteration levels, in order to investigate the bandwidth behavior of planar antennas, from the use of quasi-fractal elements printed on their rectangular patches. The electromagnetic effect produced by the variation of the fractal iterations and the miniaturization of the structures is analyzed. Moreover, a parametric study is performed to verify the bandwidth behavior, not only at the return loss but also in terms of SWR. Experimental results were obtained through the accomplishment of measurements with the aid of a vetorial network analyzer and compared to simulations performed using the Ansoft HFSS software. Finally, some proposals for future works are presented
Resumo:
In the last decades there was a concentrate effort of researchers in the search for options to the problem of the continuity of city development and environmental preservation. The recycling and reuse of materials in industry have been considerate as the best option to sustainable development. One of the relevant aspects in this case refers to the rational use of electrical energy. At this point, the role of engineering is to conceive new processes and materials, with the objective of reducing energy consumption and maintaining, at the same time the benefits of the technology. In this context, the objective of the present research is to analyze quantitatively the thermal behavior of walls constructed with concrete blocks which composition aggregates the expanded polystyrene (EPS) reused in the shape of flakes and in the shape of a board, resulting in a “light concrete”. Experiments were conducted, systematically, with a wall (considerate as a standard) constructed with blocks of ordinary concrete; two walls constructed with blocks of light concrete, distinct by the proportion of EPS/sand; a wall of ceramic bricks (“eight holes” type) and a wall with ordinary blocks of cement, in a way to obtain a comparative analysis of the thermal behavior of the systems. Others tests conducted with the blocks were: stress analysis and thermal properties analysis (ρ, cp e k). Based on the results, it was possible to establish quantitative relationship between the concentration (density) of EPS in the constructive elements and the decreasing of the heat transfer rate, that also changes the others thermal properties of the material, as was proved. It was observed that the walls of light concrete presents better thermal behavior compared with the other two constructive systems world wide used. Based in the results of the investigation, there was shown the viability of the use of EPS as aggregate (raw material) in the composition of the concrete, with the objective of the fabrication of blocks to non-structural masonry that works as a thermal insulation in buildings. A direct consequence of this result is the possibility of reduction of the consume of the electrical energy used to climatization of buildings. Other aspect of the investigation that must be pointed was the reuse of the EPS as a raw material to civil construction, with a clear benefit to reducing of environmental problems
Resumo:
The industries of structural ceramics are among the most important production chains in the state of Rio Grande do Norte. The industry and other interest groups to target the replacement of firewood by natural gas. Studies accordingly concluded that simple change does not guarantee products of superior quality, and that the increase in spending on fuel can economically cripple the use of gas for burning the majority of products manufactured by that action. However some proposals of innovations in terms of process and product are being studied in an attempt to justify the use of natural gas in industry, structural ceramics. One of the aspects investigated is the development of ceramic products differentiated, with new designs and greater value added. Inserted in that context, this paper aims to investigate the potential use of clay-firing clear fabrication of the "bricks of apparent joins drought", a new ceramic product with an innovative way. The development of the work was done in three stages. In the initial stage was held the characterization of raw materials, sought information on physical, chemical, mineralogical and mechanical samples. In the second stage five bodies were made using two of the nine ceramic clay characterized the first step. The masses were analyzed and compared with respect to the size distribution, plasticity and technological properties. In the last part of this work was carried out tests on massive bricks manufactured on an industrial scale. The results show that the nine clays can be used in the manufacture of new ceramic products, is the only constituent of mass ceramic or by mixing with other(s) clay(s
Resumo:
The objective of this research is the fabrication of a composite reinforced with dyed sisal fiber and polyester matrix for application in the fields such as, fashion, clothing, interior textiles; fashion accessories are some of the examples. For the fabrication of the composite, the sisal fibers were subjected to processes such as: chemical treatment with sodium hydroxide (NaOH) in the removal of impurities; bleaching for removing the yellowish color of the natural fiber and dyeing with direct dyes to confer the colors blue, green and orange. The search for new technologies ecologically correct has become a major concern in recent decades. Studies show that composite polymer reinforced by natural fibers is suitable for a large number of applications, and its use is advantageous in terms of economic and ecological. The dyed fibers were cut to a length of 30 mm, is used in the confection of webs. For this purpose, a web preparer by immersion, developed in the Laboratory of Chemical Textile of UFRN. The composite sheets measuring 300 x 300 x3 mm were molded by compression, with unsaturated orthophthalic polyester as matrix, and the samples in sizes 150 x 25 x 3 mm were cut with the aid of a laser machine, to be subjected to traction and flexion. The mechanical properties of traction and flexion in three points were performed in the Laboratory of metal and mechanical tests of Materials Engineering of UFRN. The resulting samples from the tests were evaluated in scanning electron microscope (SEM) at CTGas RN. On the basis of the analysis of the results from the mechanical tests, it was observed that the composite had good mechanical behavior, both in traction as in flexion. Furthermore, it was observed that in the water absorption test, the samples had a different percentage among themselves, this occurred due to the variation of density found in the fibre webs. The images of the SEM showed the failures from the manufacturing process and the adhesion of fibre/matrix. When the samples were prepared with the dyed fibers to be applied in fashion, the results were positive, and it can be concluded that the main objective of this work was achieved
Resumo:
This work studies the fabrication of spaghetti through the process at high temperatures through the use of flour added to flour and flaxseed meal, with the aim of evaluating the final product quality and estimate the cost of production. The values of moisture, ash, protein, wet gluten, gluten index, falling number and grain of flour and mixtures to test to be the possible use in mass manufacturing and technological criteria for compliance with current legislation. Spaghetti noodles type were manufactured by adding 10% and 20% flour and 10% and 20% flaxseed meal with performance of physical-chemical, sensory and rheological properties of the products. Further analysis was performed on the product acceptance and estimation of production cost in order to create subsidies to enable the introduction of products with greater acceptance and economic viability in the market by the food industry. On the rheology of the product test was cooking the pasta, specifying the volume increase, cooking time and percentage of solid waste. In the sensory evaluation was carried out the triangular test of product differentiation with 50 trained judges and acceptance testing by a hedonic scale with evaluation of the aspects color, taste, smell and texture. In defining the sensory profile of the product was performed with ADQ 9 judges recruited and trained at the factory, using unstructured scale of 9 cm, assessing the attributes of flavor of wheat, flax flavor, consistency, texture of raw pasta, raw pasta color and color of cooked pasta. The greater acceptance of product quality was good and the pasta with 20% flour, 10% followed by the full product, 10% and 20% flaxseed characterized the average quality of the criterion of loss analysis of solids, together with mass full commercial testing. In assessing the estimated cost of production, the two products more technologically feasible and acceptable (20% whole and 10% flaxseed) were evaluated in high temperature processes. With total cost of R $ 4,872.5 / 1,000 kg and R $ 5,354.9 / 1,000 kg respectively, the difference was related to the addition of lower inputs and higher added value in the market, flour and flaxseed meal. The comparative analysis of cases was confirmed the reduction in production time (10h), more uniform product to the drying process at high temperature compared to conventional
Resumo:
The study and fabrication of nanostructured systems composed of magnetic materials has been an area of great scientific and technological interest. Soft magnetic materials, in particular, have had great importance in the development of magnetic devices. Among such materials we highlight the use of alloys of Ni and Fe, known as Permalloy. We present measurement results of structural characterization and magnetic films in Permalloy (Ni81Fe19), known to be a material with high magnetic permeability, low coercivity and small magneto- crystalline anisotropy, deposited on MgO (100) substrates. The Magnetron Sputtering technique was used to obtain the samples with thicknesses varying between 9 150 nm. The techniques of X- ray Diffraction at high and low angle were employed to confirm the crystallographic orientation and thickness of the films. In order to investigate the magnetic properties of the films the techniques of Vibrant Sample Magnetometry (VSM), Ferromagnetic Resonance (FMR) and Magnetoimpedance were used. The magnetization curves revealed the presence of anisotropy for the films of Py/MgO (100), where it was found that there are three distinct axis - an easy-axis for θH = 0°, a hard-axis for θH = 45° and an intermediate for θH = 90°. The results of the FMR and Magnetoimpedance techniques confirm that there are three distinct axes, that is, there is a type C2 symmetry. Then we propose, for these results, the interpretation of the magnetic anisotropy of Py/MgO ( 100 ) is of type simple C2, ie a cubic magnetic anisotropy type ( 110 )
Resumo:
This study aims to determine the amount of nutrients and toxic elements in aquatic macrophytes of species Eichhornia crassipes present in River Apodi/Mossoró - RN and check some of the possibilities of using the biomass produced, based on the influence of space - temporal and physiological absorption of nutrients by plants. For this, was determined: Leaf area, Leaf wet mass, Leaf dry mass, Real humidity, Apparent humidity, Ash, Total nitrogen, Crude protein, Calcium, Magnesium, Potassium, Total phosphorus, Sodium, Iron, Copper, Manganese, Zinc, Nickel, Cobalt, Aluminum, Cadmium, Lead and Total chromium at different times, 2 sampling points and 2 parts of plants (leaves and roots). The results show that the levels of nutrients, protein and toxic elements present in plant tissue of Eichhornia crassipes are influenced by spatial, temporal and physiological variability. In general, because the maximum values in the dry matter for total nitrogen (4.4088 g/100g), crude protein (27.5549 g/100g), total phosphorus (0.642 g/100 g), calcium (1.444 g/100g), magnesium (0.732 g/100 g), potassium (7.51 g/100 g), copper (4.4279 mg/100g), manganese (322.668 mg/100g), sodium (1.39 g/100g), iron (194.169 mg/100g) and zinc (3.5836 mg/100g), there was the possibility of using biomass of Eichhornia crassipes for various purposes such as in food animal, products production for human consumption, organic fertilizers, fabrication of brick low cost, and crafts. For all these applications requires a control of the levels of substances in plant tissue. Based on the levels of nutrients and crude protein, the younger plants (0 Month) would be best to have their biomass used. Moreover, one factor that contributes to the use of larger plants (6 Months), the levels of toxic elements which have significantly small or below the detection limit. Therefore, further studies quantifying the biomass produced/m2 at 0 and 6 months are needed for a more correct choice for the best time of harvest
Resumo:
The aim of this work was to study a series of 11 different compositions of Ti-Zr binary alloys resistance to aggressive environment, i. e., their ability to keep their surface properties and mass when exposed to them as a way to evaluate their performance as biomaterials. The first stage was devoted to the fabrication of tablets from these alloys by Plasma-Skull casting method using a Discovery Plasma machine from EDG Equipamentos, Brazil. In a second stage, the chemical composition of each produced tablet was verified. In a third stage, the specimen were submitted to: as-cast microstructure analysis via optical and scanning electron microscopy (OM and SEM), x-ray dispersive system (EDS) chemical analysis via SEM, Vickers hardness tests for mechanical evaluation and corrosion resistence tests in a 0.9% NaCl solution to simulate exposition to human saliva monitored by open circuit potential and polarization curves. From the obtained results, it was possible to infer that specimens A1 (94,07 wt% Ti and 5,93% wt% Zr), A4 (77,81 wt % Ti and 22,19 wt % Zr) and A8 (27,83 wt% Ti and 72,17 wt% Zr), presented best performance regarding to corrosion resistance, homogeneity and hardness which are necessary issues for biomaterials to be applied as orthopedic and odontological prosthesis
Resumo:
This work consists of the conception, developing and implementation of a Computational Routine CAE which has algorithms suitable for the tension and deformation analysis. The system was integrated to an academic software named as OrtoCAD. The expansion algorithms for the interface CAE genereated by this work were developed in FORTRAN with the objective of increase the applications of two former works of PPGEM-UFRN: project and fabrication of a Electromechanincal reader and Software OrtoCAD. The software OrtoCAD is an interface that, orinally, includes the visualization of prothetic cartridges from the data obtained from a electromechanical reader (LEM). The LEM is basically a tridimensional scanner based on reverse engineering. First, the geometry of a residual limb (i.e., the remaining part of an amputee leg wherein the prothesis is fixed) is obtained from the data generated by LEM by the use of Reverse Engineering concepts. The proposed core FEA uses the Shell's Theory where a 2D surface is generated from a 3D piece form OrtoCAD. The shell's analysis program uses the well-known Finite Elements Method to describe the geometry and the behavior of the material. The program is based square-based Lagragean elements of nine nodes and displacement field of higher order to a better description of the tension field in the thickness. As a result, the new FEA routine provide excellent advantages by providing new features to OrtoCAD: independency of high cost commercial softwares; new routines were added to the OrtoCAD library for more realistic problems by using criteria of fault engineering of composites materials; enhanced the performance of the FEA analysis by using a specific grid element for a higher number of nodes; and finally, it has the advantage of open-source project and offering customized intrinsic versatility and wide possibilities of editing and/or optimization that may be necessary in the future