3 resultados para FOOD-PACKAGING MATERIALS

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The growing concern with the solid residues management, observed in the last decade, due to its huge amount and impact, has motivated the search for recycling processes, where these residues can be reprocessed to generate new products, enlarging the cycle of materials and energy which are present. Among the polymeric residues, there is poly (ethylene terephthalate) (PET). PET is used in food packaging, preferably in the bottling of carbonated beverages. The reintegration of post-consumer PET in half can be considered a productive action mitigation of environmental impacts caused by these wastes and it is done through the preparation of several different products at the origin, i.e. food packaging, with recycling rates increasing to each year. This work focused on the development and characterization mechanical, thermal, thermo-mechanical, dynamic mechanical thermal and morphology of the pure recycled PET and recycled PET composites with glass flakes in the weight fraction of 5%, 10% and 20% processed in a single screw extruder, using the following analytical techniques: thermogravimetry (TG), differential scanning calorimetry (DSC), tensile, Izod impact, Rockwell hardness, Vicat softening temperature, melt flow rate, burn rate, dynamic mechanical thermal analysis (DMTA) and scanning electron microscopy (SEM). The results of thermal analysis and mechanical properties leading to a positive evaluation, because in the thermograms the addition of glass flakes showed increasing behavior in the initial temperatures of thermal decomposition and melting crystalline, Furthermore was observed growing behavior in the mechanical performance of polymer composites, whose morphological structure was observed by SEM, verifying a good distribution of glass flakes, showing difference orientation in the center and in the surface layer of test body of composites with 10 and 20% of glass flakes. The results of DMTA Tg values of the composites obtained from the peak of tan ä showed little reductions due to poor interfacial adhesion between PET and recycled glass flakes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The growing concern with the solid residues management, observed in the last decade, due to its huge amount and impact, has motivated the search for recycling processes, where these residues can be reprocessed to generate new products, enlarging the cycle of materials and energy which are present. Among the polymeric residues, there is poly (ethylene terephthalate) (PET). PET is used in food packaging, preferably in the bottling of carbonated beverages. The reintegration of post-consumer PET in half can be considered a productive action mitigation of environmental impacts caused by these wastes and it is done through the preparation of several different products at the origin, i.e. food packaging, with recycling rates increasing to each year. This work focused on the development and characterization mechanical, thermal, thermo-mechanical, dynamic mechanical thermal and morphology of the pure recycled PET and recycled PET composites with glass flakes in the weight fraction of 5%, 10% and 20% processed in a single screw extruder, using the following analytical techniques: thermogravimetry (TG), differential scanning calorimetry (DSC), tensile, Izod impact, Rockwell hardness, Vicat softening temperature, melt flow rate, burn rate, dynamic mechanical thermal analysis (DMTA) and scanning electron microscopy (SEM). The results of thermal analysis and mechanical properties leading to a positive evaluation, because in the thermograms the addition of glass flakes showed increasing behavior in the initial temperatures of thermal decomposition and melting crystalline, Furthermore was observed growing behavior in the mechanical performance of polymer composites, whose morphological structure was observed by SEM, verifying a good distribution of glass flakes, showing difference orientation in the center and in the surface layer of test body of composites with 10 and 20% of glass flakes. The results of DMTA Tg values of the composites obtained from the peak of tan ä showed little reductions due to poor interfacial adhesion between PET and recycled glass flakes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

All medicine, whether allopathic or homeopathic, must go through strict quality control, which must ratify their characteristics throughout the period of validity. During the time of preparation and storage, solutions of the drugs are in permanent contact with packaging materials that can release undesirable substances to the solution. Several factors may influence the release of packing materials, and factorial design (FD) is a useful tool for analyzing the phenomenon. The aim of this study was the determination of quality parameters for Homeopathic solid (globules) and liquid (drops) dosage forms. It was carried out analysis in homeopathic globules for weight variation, mechanical strength, and moisture content uniformity. For liquid preparations, standard solutions were prepared from natural rubber bulbs, which were subjected to exhaustive extraction with two ethanol solutions (30 and 70%) in the ultrasonic bath for 20 minutes at 25°C and 50°C in three successive cycles. Studies of transfer have been made within five days, by spectrophotometric analysis in the UV region at 312 nm with λmáx and 323 nm for samples in 70% ethanol and 30% respectively. PH values were analyzed. We also conducted two FD studies, where the first, the three-level variables were solvent (chloroform, ethanol and nhexane), sample mass (30, 60 and 90mg), particle size (large disk, small disk and powder sample). In the second study, the solvent level variables were different ethanolic degrees (EtOH 30%, 70% and pure). The percentage of lending in the solutions was 5.5%, 12.4%, 24.2% and 41% of the total estimated in the reference solution. The values of rate constants of transfer were determined in the order of 0.0134 days-1 and 0.0232 days-1 in absorbance values, the solutions in ethanol at 30% and 70% respectively. These results suggest that the speed of transfer of materials from rubber is affected both by the nature of the vehicle as by the temperature