2 resultados para FLASH GRAIN WELDING

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work a studied the high energy milling effect in microstructure and magnetic properties of the WC-10wt.%Co composite. The composite powders were prepared by mechanical mixed and milled at 2 hours, 100 hours, 200 hours and 300 hours in planetary milling. After this process the composite were compacted in stainless steel die with cylindrical county of 10 mm of diameter, at pressure 200 Mpa and sintered in a resistive furnace in argon atmosphere at 1400 oC for 5 min. The sintered composite were cutted, inlaid, sandpapered, and polished. The microestrutural parameters of the composite was analyzed by X-ray diffraction, scanning electronic microscopy, optical microscopy, hardness, magnetic propriety and Rietveld method analyze. The results shows, with milling time increase the particle size decrease, it possibility minor temperature of sintering. The increase of milling time caused allotropic transformation in cobalt phase and cold welding between particles. The cold welding caused the formation of the particle composite. The X-ray diffraction pattern of composite powders shows the WC peaks intensity decrease with the milling time increase. The X-ray diffraction pattern of the composite sintered samples shows the other phases. The magnetic measurements detected a significant increase in the coercitive field and a decrease in the saturation magnetization with milling time increase. The increase coercitive field it was also verified with decrease grain size with milling time increase. For the composite powders the increase coercitive field it was verified with particle size reduction and saturation magnetization variation is relate with the variation of free cobalt. The Rietveld method analyze shows at milling time increase the mean crystalline size of WC, and Co-cfc phases in composite sintered sample are higher than in composite powders. The mean crystallite size of Co-hc phase in composite powders is higher than in composite sintered sample. The mean lattice strains of WC, Co-hc and Co-cfc phases in composite powders are higher than in composite sintered samples. The cells parameters of the composite powder decrease at milling time increase this effect came from the particle size reduction at milling time increase. In sintered composite the cells parameters is constant with milling time increase

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, a pneumatic dryer has been designed and assembled in laboratory scale in order to study and evaluate configurations more efficient for application in drying of important materials of Northeast region in Brazil. The equipment was tested with drying of corn and rice grains, in conditions of temperature and air velocity at 80 oC and 35 m/s, respectively. For this type of dryer, it is recommended to work at temperatures above 200 °C and air velocity with higher dynamic pressure. However, even under operating conditions below what it is recommended, the results obtained with the pneumatic dryer were satisfactory. In addition, experiments of drying were performed by using a cabinet dryer (batch dryer) under the same conditions used in the pneumatic dryer. Flash one curves for the corn were fitted satisfactorily by applying of the Lewis model, while a better agreement was found for rice by using the Page model. The data obtained with both drying processes allowed to compare the performance between pneumatic and batch dryers. In respect to drying rate, the pneumatic dryer presented a similar performance to the batch dryer during processing with corn and a superior performance to the last one during processing with rice. Therefore, it was possible to verify that the pneumatic dryer assembled in this preliminar study can be applied for different materials and under different operating conditions