3 resultados para Extracellular Glutamate
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The subthalamic nucleus (STN) is a key area of the basal ganglia circuitry regulating movement. We identified a subpopulation of neurons within this structure that coexpresses Vglut2 and Pitx2, and by conditional targeting of this subpopulation we reduced Vglut2 expression levels in the STN by 40%, leaving Pitx2 expression intact. This reduction diminished, yet did not eliminate, glutamatergic transmission in the substantia nigra pars reticulata and entopeduncular nucleus, two major targets of the STN. The knock-out mice displayed hyperlocomotion and decreased latency in the initiation of movement while preserving normal gait and balance. Spatial cognition, social function, and level of impulsive choice also remained undisturbed. Furthermore, these mice showed reduced dopamine transporter binding and slower dopamine clearance in vivo, suggesting that Vglut2-expressing cells in the STN regulate dopaminergic transmission. Our results demonstrate that altering the contribution of a limited population within the STN is sufficient to achieve results similar to STN lesions and high-frequency stimulation, but with fewer side effects.
Resumo:
Nicotine administration in humans and rodents enhances memory and attention, and also has a positive effect in Alzheimer's Disease. The Medial Septum / Diagonal Band of Broca complex (MS/DBB) – a main cholinergic system – massively projects to the hippocampus through the fimbria-fornix, and this pathway is called the septohippocampal pathway. It has been demonstrated that the MS/DBB acts directly on the local field potential (LFP) rhythmic organization of the hippocampus, especially in the rhythmogenesis of Theta (4-8Hz) – an oscillation intrinsically linked to hippocampus mnemonic function. In vitro experiments gave evidence that nicotine applied to the MS/DBB generates a local network Theta rhythm within the MS/DBB. Thus, the present study proposes to elucidate the function of nicotine in the MS/DBB on the septo-hippocampal pathway. In vivo experiments compared the effect of MS/DBB microinfusion of saline (n=5) and nicotine (n=8) on Ketamine/Xylazine anaesthetized mice. We observed power spectrum density in the Gamma range (35 to 55 Hz) increasing in both structures (Wilcoxon Rank-Sum test, p=0.038) but with no change in coherence between these structures in the same range (Wilcoxon Rank-Sum test, p=0.60). There was also a decrease in power of the ketamineinduced Delta oscillation (1 to 3 Hz). We also performed in vitro experiments on the effect of nicotine on membrane voltage and action potential. We patch-clamped 22 neurons in current-clamp mode; 12 neurons were responsive to nicotine, half of them increased firing rate and other 6 decreased, and they significantly differed in action potential threshold (-47.3±0.9 mV vs. -41±1.9 mV, respectively, p=0.007) and halfwidth time (1.6±0.08 ms vs. 2±0.12 ms, respectively, p=0.01). Furthermore, we performed another set of in vitro experiments concerning the connectivity of the three major neuronal populations of MS/DBB that use acetylcholine, GABA or glutamate as neurotransmitter. Paired patch-clamp recordings found that glutamatergic and GABAergic neurons realize intra-septal connections that produce sizable currents in MS/DBB postsynaptic neurons. The probability of connectivity between different neuronal populations gave rise to a MS/DBB topology that was implemented in a realistic model, which corroborates that the network is highly sensitive to the generation of Gamma rhythm. Together, the data available in the full set of experiments suggests that nicotine may act as a cognitive enhancer, by inducing gamma oscillation in the local circuitry of the MS/DBB.
Resumo:
The subthalamic nucleus (STN) is a key area of the basal ganglia circuitry regulating movement. We identified a subpopulation of neurons within this structure that coexpresses Vglut2 and Pitx2, and by conditional targeting of this subpopulation we reduced Vglut2 expression levels in the STN by 40%, leaving Pitx2 expression intact. This reduction diminished, yet did not eliminate, glutamatergic transmission in the substantia nigra pars reticulata and entopeduncular nucleus, two major targets of the STN. The knock-out mice displayed hyperlocomotion and decreased latency in the initiation of movement while preserving normal gait and balance. Spatial cognition, social function, and level of impulsive choice also remained undisturbed. Furthermore, these mice showed reduced dopamine transporter binding and slower dopamine clearance in vivo, suggesting that Vglut2-expressing cells in the STN regulate dopaminergic transmission. Our results demonstrate that altering the contribution of a limited population within the STN is sufficient to achieve results similar to STN lesions and high-frequency stimulation, but with fewer side effects.