5 resultados para Estabilidade de redes
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
This work develops a robustness analysis with respect to the modeling errors, being applied to the strategies of indirect control using Artificial Neural Networks - ANN s, belong to the multilayer feedforward perceptron class with on-line training based on gradient method (backpropagation). The presented schemes are called Indirect Hybrid Control and Indirect Neural Control. They are presented two Robustness Theorems, being one for each proposed indirect control scheme, which allow the computation of the maximum steady-state control error that will occur due to the modeling error what is caused by the neural identifier, either for the closed loop configuration having a conventional controller - Indirect Hybrid Control, or for the closed loop configuration having a neural controller - Indirect Neural Control. Considering that the robustness analysis is restrict only to the steady-state plant behavior, this work also includes a stability analysis transcription that is suitable for multilayer perceptron class of ANN s trained with backpropagation algorithm, to assure the convergence and stability of the used neural systems. By other side, the boundness of the initial transient behavior is assured by the assumption that the plant is BIBO (Bounded Input, Bounded Output) stable. The Robustness Theorems were tested on the proposed indirect control strategies, while applied to regulation control of simulated examples using nonlinear plants, and its results are presented
Resumo:
The present work describes the use of a mathematical tool to solve problems arising from control theory, including the identification, analysis of the phase portrait and stability, as well as the temporal evolution of the plant s current induction motor. The system identification is an area of mathematical modeling that has as its objective the study of techniques which can determine a dynamic model in representing a real system. The tool used in the identification and analysis of nonlinear dynamical system is the Radial Basis Function (RBF). The process or plant that is used has a mathematical model unknown, but belongs to a particular class that contains an internal dynamics that can be modeled.Will be presented as contributions to the analysis of asymptotic stability of the RBF. The identification using radial basis function is demonstrated through computer simulations from a real data set obtained from the plant
Resumo:
Expanded Bed Adsorption (EBA) is an integrative process that combines concepts of chromatography and fluidization of solids. The many parameters involved and their synergistic effects complicate the optimization of the process. Fortunately, some mathematical tools have been developed in order to guide the investigation of the EBA system. In this work the application of experimental design, phenomenological modeling and artificial neural networks (ANN) in understanding chitosanases adsorption on ion exchange resin Streamline® DEAE have been investigated. The strain Paenibacillus ehimensis NRRL B-23118 was used for chitosanase production. EBA experiments were carried out using a column of 2.6 cm inner diameter with 30.0 cm in height that was coupled to a peristaltic pump. At the bottom of the column there was a distributor of glass beads having a height of 3.0 cm. Assays for residence time distribution (RTD) revelead a high degree of mixing, however, the Richardson-Zaki coefficients showed that the column was on the threshold of stability. Isotherm models fitted the adsorption equilibrium data in the presence of lyotropic salts. The results of experiment design indicated that the ionic strength and superficial velocity are important to the recovery and purity of chitosanases. The molecular mass of the two chitosanases were approximately 23 kDa and 52 kDa as estimated by SDS-PAGE. The phenomenological modeling was aimed to describe the operations in batch and column chromatography. The simulations were performed in Microsoft Visual Studio. The kinetic rate constant model set to kinetic curves efficiently under conditions of initial enzyme activity 0.232, 0.142 e 0.079 UA/mL. The simulated breakthrough curves showed some differences with experimental data, especially regarding the slope. Sensitivity tests of the model on the surface velocity, axial dispersion and initial concentration showed agreement with the literature. The neural network was constructed in MATLAB and Neural Network Toolbox. The cross-validation was used to improve the ability of generalization. The parameters of ANN were improved to obtain the settings 6-6 (enzyme activity) and 9-6 (total protein), as well as tansig transfer function and Levenberg-Marquardt training algorithm. The neural Carlos Eduardo de Araújo Padilha dezembro/2013 9 networks simulations, including all the steps of cycle, showed good agreement with experimental data, with a correlation coefficient of approximately 0.974. The effects of input variables on profiles of the stages of loading, washing and elution were consistent with the literature
Resumo:
Metal Organic Frameworks (MOFs) are supramolecular structures consisted of ions or metal clusters coordinated to organic ligands which are repeated in two or three dimensions. These structures have atracted much attention due to their properties such as low density, high specific surface area and large volume of pores. In this work, MOFs consisted of zinc clusters connected by ditopic ligands, terephthalic acid (1,4- H2BDC) or isophthalic acid (1,3-H2BDC) were synthesized. To obtain the proposed materials, different routes and synthetic parameters were tested, such as the molar ratio of the precursors, the addition of template molecules, the type of solvente, the addition of organic base or the type of a counter-ion of Zn salt. It was found that the variation of these parameters led to the formation of different metalorganic structures. The solids obtained were characterized by XRD, SEM and IR. For the samples identified as MOF- 5, it was verified that the structure was composed of both interpenetrated and non interpenetrated structures. These samples showed a low stability, becoming totally transformed into another structure within less than 72 hours. The addition of the nickel and/or cobalt was found to be a promissing method for increasing the stability of MOF- 5, which in this case, still remained unconverted to another structure even after 15 days of exposure to air. The samples prepared from 1,3-H2BDC were probably new, still unknown Metal Organic Frameworks
Resumo:
Wireless sensor networks (WSN) have gained ground in the industrial environment, due to the possibility of connecting points of information that were inaccessible to wired networks. However, there are several challenges in the implementation and acceptance of this technology in the industrial environment, one of them the guaranteed availability of information, which can be influenced by various parameters, such as path stability and power consumption of the field device. As such, in this work was developed a tool to evaluate and infer parameters of wireless industrial networks based on the WirelessHART and ISA 100.11a protocols. The tool allows quantitative evaluation, qualitative evaluation and evaluation by inference during a given time of the operating network. The quantitative and qualitative evaluation are based on own definitions of parameters, such as the parameter of stability, or based on descriptive statistics, such as mean, standard deviation and box plots. In the evaluation by inference uses the intelligent technique artificial neural networks to infer some network parameters such as battery life. Finally, it displays the results of use the tool in different scenarios networks, as topologies star and mesh, in order to attest to the importance of tool in evaluation of the behavior of these networks, but also support possible changes or maintenance of the system.