11 resultados para Equipamentos supercondutores
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The main objective is to analyze the abrasive wear resistance to the low stress of the elements that make up the organs of road machinery that are exposed directly to contact with abrasives. These samples were analyzed after these elements are coated superficially by the process of welding electrode coated with (SAER) and the manual process of coating type LVOF thermal spraying. As well, is to provide suggestions for a better recovery and return of these elements, which are reducing costs and avoiding downtime in the fronts of service. The samples were made from a substrate of carbon ABNT 1045 tempered steel, following the same specifications and composition of metals and alloys of constituents was followed the standard governing the dimensions of these samples and in accordance with the corresponding size. The results were evaluated by testing the hardness, abrasion resistance to wear by the low stress and the loss of volume involving the microstructure of coatings analyzed
Resumo:
This master´s thesis presents a reliability study conducted among onshore oil fields in the Potiguar Basin (RN/CE) of Petrobras company, Brazil. The main study objective was to build a regression model to predict the risk of failures that impede production wells to function properly using the information of explanatory variables related to wells such as the elevation method, the amount of water produced in the well (BSW), the ratio gas-oil (RGO), the depth of the production bomb, the operational unit of the oil field, among others. The study was based on a retrospective sample of 603 oil columns from all that were functioning between 2000 and 2006. Statistical hypothesis tests under a Weibull regression model fitted to the failure data allowed the selection of some significant predictors in the set considered to explain the first failure time in the wells
Resumo:
This study presents itself as a contribution to the solidification of the Natural Gas industry, within the scope of the development of new products. The goal of this paper is to analyze the factors that lead to the success of new products through the evaluation of the activities done during the process of development of these products in the Natural Gas sector. To achieve this goal a case study was done in a small company of this segment. At first, as a basis for the study, a bibliographical research was done with books, theses, dissertations, monographies, publications in national and international periodicals, congress annals and publications in the internet related to the subject. Afterwards, a case study was done, aiming at the acquisition of further knowledge about the real process of development of products in a small company of the Natural Gas sector, allowing for the performance of the evaluation. The case study was done at Gas Project and Systems do Brasil, a company that works with the development of electronic equipment to the conversion of car engines to natural gas, through direct observations and interviews with the person responsible for the development and management of products. Through the evaluation of the process it was observed that the activities related to it are done in an informal way and some activities are considered unnecessary for their success. The results also suggest an emphasis in the technological activities, something that was not observed in the activities related to the market. The instruments used in this evaluation prove to be efficient to evaluate the process of development of new products in other companies, including those of different areas. Taking into account the relevance of the studied theme to the strengthening of the Natural Gas industry, it is necessary to do further complementary studies
Resumo:
This work presents a theoretical and numerical analysis of parameters of a rectangular microstrip antenna with bianisotropic substrate, and including simultaneously the superconducting patch. The full-wave Transverse Transmission Line - TTL method, is used to characterize these antennas. The bianisotropic substrate is characterized by the permittivity and permeability tensors, and the TTL gives the general equations of the electromagnetic fields of the antennas. The BCS theory and the two fluids model are applied to superconductors in these antennas with bianisotropic for first time. The inclusion of superconducting patch is made using the complex resistive boundary condition. The resonance complex frequency is then obtained. Are simulated some parameters of antennas in order to reduce the physical size, and increase the its bandwidth. The numerical results are presented through of graphs. The theoretical and computational analysis these works are precise and concise. Conclusions and suggestions for future works are presented
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
Recently, planar antennas have been studied due to their characteristics as well as the advantages that they offers when compared with another types of antennas. In the mobile communications area, the need for this kind of antennas have became each time bigger due to the intense increase of the mobile communications this sector. That needs of antennas which operate in multifrequency and wide bandwidth. The microstrip antennas presents narrow bandwidth due the loss in the dielectric generated by radiation. Another limitation is the radiation pattern degradation due the generation of surface waves in the substrate. In this work some used techniques to minimize the disadvantages (previously mentioned) of the use of microstrip antennas are presented, those are: substrates with PBG material - Photonic Bandgap, multilayer antennas and with stacked patches. The developed analysis in this work used the TTL - Transverse Transmission Line method in the domain of Fourier transform, that uses a component of propagation in the y direction (transverse to the direction real of propagation z), treating the general equations of electric and magnetic field as functions of Ey and Hy. One of the advantages of this method is the simplification of the field equations. therefore the amount of equations lesser must the fields in directions x and z be in function of components Ey and Hy. It will be presented an brief study of the main theories that explain the superconductivity phenomenon. The BCS theory. London Equations and Two Fluids model will be the theories that will give support the application of the superconductors in the microfita antennas. The inclusion of the superconductor patch is made using the resistive complex contour condition. This work has as objective the application of the TTL method to microstrip structures with single and multilayers of rectangular patches, to obtaining the resonance frequency and radiation pattern of each structure
Resumo:
In general, the designs of equipment takes into account the effects and processes of deterioration it will undergo and arrives at an approximate useful life. However, changes in operational processes and parameters, the action of external agents, the kind of maintenance conducted, the means of monitoring, and natural and accidental occurrences completely modify the desired performance of the equipment. The discontinuities that occur in anisotropic materials often and due to different factors evolve from being subcritical to critical acquiring the status of defect and compromising the physical integrity of the equipment. Increasingly sophisticated technological means of detection, monitoring and assessment of these discontinuities are required to respond ever more rapidly to the requirements of industry. This paper therefore presents a VPS (Virtual Pipe System) computational tool which uses the results of ultrasonic tests on equipment, plotting the discontinuities found in models created in the CAD and CAE systems, and then simulates the behavior of these defects in the structure to give an instantaneous view of the final behavior. This paper also presents an alternative method of conventional ultrasonic testing which correlates the integrity of an overlay (carbon steel and stainless steel attached by welding) and the reflection of ultrasonic waves coming from the interface between the two metals, thus making it possible to identify cracks in the casing and a shift of the overlay
Resumo:
Composite materials can be defined as materials formed from two or more constituents with different compositions, structures and properties, which are separated by an interface. The main objective in producing composites is to combine different materials to produce a single device with superior properties to the component unit. The present study used a composite consisting of plaster, cement, EPS, tire, PET and water to build prototype solar attempt to reduce the manufacturing cost of such equipment. It was built two box type solar cookers, a cooler to be cooled by solar energy, a solar dryer and a solar cooker concentration. For these prototypes were discussed the processes of construction and assembly, determination of thermal and mechanical properties, and raising the performance of such solar systems. Were also determined the proportions of the constituents of the composite materials according to specific performance of each prototype designed. This compound proved to be feasible for the manufacture of such equipment, low cost and easy manufacturing and assembly processes
Resumo:
Due to the constantly increasing use of wireless networks in domestic, business and industrial environments, new challenges have emerged. The prototyping of new protocols in these environments is typically restricted to simulation environments, where there is the need of double implementation, one in the simulation environment where an initial proof of concept is performed and the other one in a real environment. Also, if real environments are used, it is not trivial to create a testbed for high density wireless networks given the need to use various real equipment as well as attenuators and power reducers to try to reduce the physical space required to create these laboratories. In this context, LVWNet (Linux Virtual Wireless Network) project was originally designed to create completely virtual testbeds for IEEE 802.11 networks on the Linux operating system. This paper aims to extend the current project LVWNet, adding to it the features like the ability to interact with real wireless hardware, provides a initial mobility ability using the positioning of the nodes in a space coordinates environment based on meters, with loss calculations due to attenuation in free space, enables some scalability increase by creating an own protocol that allows the communication between nodes without an intermediate host and dynamic registration of nodes, allowing new nodes to be inserted into in already in operation network
Resumo:
This work aims to study and investigate the use of a hybrid composite polymer formed with blanket aramid (Kevlar 29) fiber blanket flax fiber and particulate dry endocarp of coconut (Cocos nucifera Linn), using as matrix an epoxy resin based thermoset for use in areas of protective equipment. Besides such material is used an aluminum plate, joined to the composite by means of glue based on epoxy and araldite commercial. The manufacturing process adopted was manual lamination (Hand Lay Up) to manufacture the hybrid composite. After the composite is prepared, an aluminum plate is subjected to pressure and glued to cure the adhesive. Layers of veil will also be used to separate the particulate from the linen blanket layer without disturbing the alignment of the fibers of the blankets. To characterize the mechanical and physical behavior was manufactured a plate of 800 x 600 mm of the hybrid composite, which were removed specimens for tests of water absorption to saturation; density; impact test (Charpy) and two test specimens for ballistic testing 220 mm x 200 mm to make a comparative study between the dry state and saturated water absorption and thus see the ballistic performance of these two conditions. The test was applied to make a comparative study of fracture in these two conditions, caused by penetrating ballistic missile (38 and 380). To test the impact (Charpy) will analyze the absorbed energy, fracture appearance and lateral contraction, also in dry condition and saturation of absorbed water, thereby analyzing situations where the impact load is relevant, such as bumps and shocks produced by stone, metal or wooden bars among others. The proposed configuration, along with the tests, has the purpose, application in the fields of equipment against ballistic impact, such as helmets; bullet proof vests; shields; protective packaging and other items to be identified in this research.
Resumo:
The main objective is to analyze the abrasive wear resistance to the low stress of the elements that make up the organs of road machinery that are exposed directly to contact with abrasives. These samples were analyzed after these elements are coated superficially by the process of welding electrode coated with (SAER) and the manual process of coating type LVOF thermal spraying. As well, is to provide suggestions for a better recovery and return of these elements, which are reducing costs and avoiding downtime in the fronts of service. The samples were made from a substrate of carbon ABNT 1045 tempered steel, following the same specifications and composition of metals and alloys of constituents was followed the standard governing the dimensions of these samples and in accordance with the corresponding size. The results were evaluated by testing the hardness, abrasion resistance to wear by the low stress and the loss of volume involving the microstructure of coatings analyzed