3 resultados para Episodic Memory
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Episodic memory refers to the recollection of what, where and when a specific event occurred. Hippocampus is a key structure in this type of memory. Computational models suggest that the dentate gyrus (DG) and the CA3 hippocampal subregions are involved in pattern separation and the rapid acquisition of episodic memories, while CA1 is involved in memory consolidation. However there are few studies with animal models that access simultaneously the aspects ‗what-where-when . Recently, an object recognition episodic-like memory task in rodents was proposed. This task consists of two sample trials and a test phase. In sample trial one, the rat is exposed to four copies of an object. In sample trial two, one hour later, the rat is exposed to four copies of a different object. In the test phase, 1 h later, two copies of each of the objects previously used are presented. One copy of the object used in sample trial one is located in a different place, and therefore it is expected to be the most explored object.However, the short retention delay of the task narrows its applications. This study verifies if this task can be evoked after 24h and whether the pharmacological inactivation of the DG/CA3 and CA1 subregions could differentially impair the acquisition of the task described. Validation of the task with a longer interval (24h) was accomplished (animals showed spatiotemporal object discrimination and scopolamine (1 mg/kg, ip) injected pos-training impaired performance). Afterwards, the GABA agonist muscimol, (0,250 μg/μl; volume = 0,5 μl) or saline were injected in the hippocampal subregions fifteen minutes before training. Pre-training inactivation of the DG/CA3 subregions impaired the spatial discrimination of the objects (‗where ), while the temporal discrimination (‗when ) was preserved. Rats treated with muscimol in the CA1 subregion explored all the objects equally well, irrespective of place or presentation time. Our results corroborate the computational models that postulate a role for DG/CA3 in spatial pattern separation, and a role for CA1 in the consolidation process of different mnemonic episodes
Resumo:
The episodic memory system allows us to retrieve information about events, including its contextual aspects. It has been suggested that episodic memory is composed by two independent components: recollection and familiarity. Recollection is related to the vivid e detailed retrieval of item and contextual information, while familiarity is the capability to recognize items previously seen as familiars. Despite the fact that emotion is one of the most influent process on memory, only a few studies have investigated its effect on recollection and familiarity. Another limitation of studies about the effect of emotion on memory is that the majority of them have not adequately considered the differential effects of arousal and positive/negative valence. The main purpose of the current work is to investigate the independent effect of emotional valence and arousal on recollection and familiarity, as well as to test some hypothesis that have been suggested about the effect of emotion on episodic memory. The participants of the research performed a recognition task for three lists of emotional pictures: high arousal negative, high arousal positive and low arousal positive. At the test session, participants also rated the confidence level of their responses. The confidence ratings were used to plot ROC curves and estimate the contributions of recollection and familiarity of recognition performance. As the main results, we found that negative valence enhanced the component of recollection without any effect on familiarity or recognition accuracy. Arousal did not affect recognition performance or their components, but high arousal was associated with a higher proportion of false memories. This work highlight the importance of to consider both the emotional dimensions and episodic memory components in the study of emotion effect on episodic memory, since they interact in complex and independent way
Resumo:
The aging process causes changes in the elderly’s sleep/awake standard impairing their cognitive abilities, particularly executive functioning, which already suffers loss by aging. The literature suggests that executive function and preserved sleep quality are key to maintaining good quality of life and independence of older people, requiring interventions to minimize the impact of losses incurred by the aging process. This study evaluated the effect of a cognitive training program and sleep hygiene techniques for executive functions and sleep quality in healthy older people. The participants were 41 healthy older adults, of both sexes, who were randomly divided into four groups: control group [GC], cognitive training group [GTC], sleep hygiene group [GHS] and training group + hygiene [GTH]. The research was developed in three stages: 1st - initial assessment of cognition and sleep; 2nd - specific intervention to each group; 3rd - post-intervention revaluation. The results showed that GTC had significant improvements in cognitive tasks flexibility, planning, verbal fluency and some aspects of episodic memory, besides gains in sleep quality and decrease on daytime hypersomnolence. The GHS improved sleep quality and daytime sleepiness as well and had significant improvements in insights capacity, planning, attention and in all evaluated aspects of episodic memory. The GTH had significant gains in cognitive flexibility, problem solving, verbal fluency, attention and episodic memory. The CG showed significant worsening in excessive daytime sleepiness in capacity planning. Thus, we conclude that cognitive training interventions and sleep hygiene strategies are useful in improving cognitive performance and quality of healthy elderly sleep.