162 resultados para Enxame de partículas
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Particle Swarm Optimization is a metaheuristic that arose in order to simulate the behavior of a number of birds in flight, with its random movement locally, but globally determined. This technique has been widely used to address non-liner continuous problems and yet little explored in discrete problems. This paper presents the operation of this metaheuristic, and propose strategies for implementation of optimization discret problems as form of execution parallel as sequential. The computational experiments were performed to instances of the TSP, selected in the library TSPLIB contenct to 3038 nodes, showing the improvement of performance of parallel methods for their sequential versions, in executation time and results
Resumo:
The bidimensional periodic structures called frequency selective surfaces have been well investigated because of their filtering properties. Similar to the filters that work at the traditional radiofrequency band, such structures can behave as band-stop or pass-band filters, depending on the elements of the array (patch or aperture, respectively) and can be used for a variety of applications, such as: radomes, dichroic reflectors, waveguide filters, artificial magnetic conductors, microwave absorbers etc. To provide high-performance filtering properties at microwave bands, electromagnetic engineers have investigated various types of periodic structures: reconfigurable frequency selective screens, multilayered selective filters, as well as periodic arrays printed on anisotropic dielectric substrates and composed by fractal elements. In general, there is no closed form solution directly from a given desired frequency response to a corresponding device; thus, the analysis of its scattering characteristics requires the application of rigorous full-wave techniques. Besides that, due to the computational complexity of using a full-wave simulator to evaluate the frequency selective surface scattering variables, many electromagnetic engineers still use trial-and-error process until to achieve a given design criterion. As this procedure is very laborious and human dependent, optimization techniques are required to design practical periodic structures with desired filter specifications. Some authors have been employed neural networks and natural optimization algorithms, such as the genetic algorithms and the particle swarm optimization for the frequency selective surface design and optimization. This work has as objective the accomplishment of a rigorous study about the electromagnetic behavior of the periodic structures, enabling the design of efficient devices applied to microwave band. For this, artificial neural networks are used together with natural optimization techniques, allowing the accurate and efficient investigation of various types of frequency selective surfaces, in a simple and fast manner, becoming a powerful tool for the design and optimization of such structures
Resumo:
The frequency selective surfaces, or FSS (Frequency Selective Surfaces), are structures consisting of periodic arrays of conductive elements, called patches, which are usually very thin and they are printed on dielectric layers, or by openings perforated on very thin metallic surfaces, for applications in bands of microwave and millimeter waves. These structures are often used in aircraft, missiles, satellites, radomes, antennae reflector, high gain antennas and microwave ovens, for example. The use of these structures has as main objective filter frequency bands that can be broadcast or rejection, depending on the specificity of the required application. In turn, the modern communication systems such as GSM (Global System for Mobile Communications), RFID (Radio Frequency Identification), Bluetooth, Wi-Fi and WiMAX, whose services are highly demanded by society, have required the development of antennas having, as its main features, and low cost profile, and reduced dimensions and weight. In this context, the microstrip antenna is presented as an excellent choice for communications systems today, because (in addition to meeting the requirements mentioned intrinsically) planar structures are easy to manufacture and integration with other components in microwave circuits. Consequently, the analysis and synthesis of these devices mainly, due to the high possibility of shapes, size and frequency of its elements has been carried out by full-wave models, such as the finite element method, the method of moments and finite difference time domain. However, these methods require an accurate despite great computational effort. In this context, computational intelligence (CI) has been used successfully in the design and optimization of microwave planar structures, as an auxiliary tool and very appropriate, given the complexity of the geometry of the antennas and the FSS considered. The computational intelligence is inspired by natural phenomena such as learning, perception and decision, using techniques such as artificial neural networks, fuzzy logic, fractal geometry and evolutionary computation. This work makes a study of application of computational intelligence using meta-heuristics such as genetic algorithms and swarm intelligence optimization of antennas and frequency selective surfaces. Genetic algorithms are computational search methods based on the theory of natural selection proposed by Darwin and genetics used to solve complex problems, eg, problems where the search space grows with the size of the problem. The particle swarm optimization characteristics including the use of intelligence collectively being applied to optimization problems in many areas of research. The main objective of this work is the use of computational intelligence, the analysis and synthesis of antennas and FSS. We considered the structures of a microstrip planar monopole, ring type, and a cross-dipole FSS. We developed algorithms and optimization results obtained for optimized geometries of antennas and FSS considered. To validate results were designed, constructed and measured several prototypes. The measured results showed excellent agreement with the simulated. Moreover, the results obtained in this study were compared to those simulated using a commercial software has been also observed an excellent agreement. Specifically, the efficiency of techniques used were CI evidenced by simulated and measured, aiming at optimizing the bandwidth of an antenna for wideband operation or UWB (Ultra Wideband), using a genetic algorithm and optimizing the bandwidth, by specifying the length of the air gap between two frequency selective surfaces, using an optimization algorithm particle swarm
Resumo:
This thesis describes design methodologies for frequency selective surfaces (FSSs) composed of periodic arrays of pre-fractals metallic patches on single-layer dielectrics (FR4, RT/duroid). Shapes presented by Sierpinski island and T fractal geometries are exploited to the simple design of efficient band-stop spatial filters with applications in the range of microwaves. Initial results are discussed in terms of the electromagnetic effect resulting from the variation of parameters such as, fractal iteration number (or fractal level), fractal iteration factor, and periodicity of FSS, depending on the used pre-fractal element (Sierpinski island or T fractal). The transmission properties of these proposed periodic arrays are investigated through simulations performed by Ansoft DesignerTM and Ansoft HFSSTM commercial softwares that run full-wave methods. To validate the employed methodology, FSS prototypes are selected for fabrication and measurement. The obtained results point to interesting features for FSS spatial filters: compactness, with high values of frequency compression factor; as well as stable frequency responses at oblique incidence of plane waves. This thesis also approaches, as it main focus, the application of an alternative electromagnetic (EM) optimization technique for analysis and synthesis of FSSs with fractal motifs. In application examples of this technique, Vicsek and Sierpinski pre-fractal elements are used in the optimal design of FSS structures. Based on computational intelligence tools, the proposed technique overcomes the high computational cost associated to the full-wave parametric analyzes. To this end, fast and accurate multilayer perceptron (MLP) neural network models are developed using different parameters as design input variables. These neural network models aim to calculate the cost function in the iterations of population-based search algorithms. Continuous genetic algorithm (GA), particle swarm optimization (PSO), and bees algorithm (BA) are used for FSSs optimization with specific resonant frequency and bandwidth. The performance of these algorithms is compared in terms of computational cost and numerical convergence. Consistent results can be verified by the excellent agreement obtained between simulations and measurements related to FSS prototypes built with a given fractal iteration
Resumo:
Image segmentation is one of the image processing problems that deserves special attention from the scientific community. This work studies unsupervised methods to clustering and pattern recognition applicable to medical image segmentation. Natural Computing based methods have shown very attractive in such tasks and are studied here as a way to verify it's applicability in medical image segmentation. This work treats to implement the following methods: GKA (Genetic K-means Algorithm), GFCMA (Genetic FCM Algorithm), PSOKA (PSO and K-means based Clustering Algorithm) and PSOFCM (PSO and FCM based Clustering Algorithm). Besides, as a way to evaluate the results given by the algorithms, clustering validity indexes are used as quantitative measure. Visual and qualitative evaluations are realized also, mainly using data given by the BrainWeb brain simulator as ground truth
Resumo:
The modern industrial progress has been contaminating water with phenolic compounds. These are toxic and carcinogenic substances and it is essential to reduce its concentration in water to a tolerable one, determined by CONAMA, in order to protect the living organisms. In this context, this work focuses on the treatment and characterization of catalysts derived from the bio-coal, by-product of biomass pyrolysis (avelós and wood dust) as well as its evaluation in the phenol photocatalytic degradation reaction. Assays were carried out in a slurry bed reactor, which enables instantaneous measurements of temperature, pH and dissolved oxygen. The experiments were performed in the following operating conditions: temperature of 50 °C, oxygen flow equals to 410 mL min-1 , volume of reagent solution equals to 3.2 L, 400 W UV lamp, at 1 atm pressure, with a 2 hours run. The parameters evaluated were the pH (3.0, 6.9 and 10.7), initial concentration of commercial phenol (250, 500 and 1000 ppm), catalyst concentration (0, 1, 2, and 3 g L-1 ), nature of the catalyst (activated avelós carbon washed with dichloromethane, CAADCM, and CMADCM, activated dust wood carbon washed with dichloromethane). The results of XRF, XRD and BET confirmed the presence of iron and potassium in satisfactory amounts to the CAADCM catalyst and on a reduced amount to CMADCM catalyst, and also the surface area increase of the materials after a chemical and physical activation. The phenol degradation curves indicate that pH has a significant effect on the phenol conversion, showing better results for lowers pH. The optimum concentration of catalyst is observed equals to 1 g L-1 , and the increase of the initial phenol concentration exerts a negative influence in the reaction execution. It was also observed positive effect of the presence of iron and potassium in the catalyst structure: betters conversions were observed for tests conducted with the catalyst CAADCM compared to CMADCM catalyst under the same conditions. The higher conversion was achieved for the test carried out at acid pH (3.0) with an initial concentration of phenol at 250 ppm catalyst in the presence of CAADCM at 1 g L-1 . The liquid samples taken every 15 minutes were analyzed by liquid chromatography identifying and quantifying hydroquinone, p-benzoquinone, catechol and maleic acid. Finally, a reaction mechanism is proposed, cogitating the phenol is transformed into the homogeneous phase and the others react on the catalyst surface. Applying the model of Langmuir-Hinshelwood along with a mass balance it was obtained a system of differential equations that were solved using the Runge-Kutta 4th order method associated with a optimization routine called SWARM (particle swarm) aiming to minimize the least square objective function for obtaining the kinetic and adsorption parameters. Related to the kinetic rate constant, it was obtained a magnitude of 10-3 for the phenol degradation, 10-4 to 10-2 for forming the acids, 10-6 to 10-9 for the mineralization of quinones (hydroquinone, p-benzoquinone and catechol), 10-3 to 10-2 for the mineralization of acids.
Resumo:
Metal powder sintering appears to be promising option to achieve new physical and mechanical properties combining raw material with new processing improvements. It interest over many years and continue to gain wide industrial application. Stainless steel is a widely accepted material because high corrosion resistance. However stainless steels have poor sinterability and poor wear resistance due to their low hardness. Metal matrix composite (MMC) combining soft metallic matrix reinforced with carbides or oxides has attracted considerable attention for researchers to improve density and hardness in the bulk material. This thesis focuses on processing 316L stainless steel by addition of 3% wt niobium carbide to control grain growth and improve densification and hardness. The starting powder were water atomized stainless steel manufactured for Höganäs (D 50 = 95.0 μm) and NbC produced in the UFRN and supplied by Aesar Alpha Johnson Matthey Company with medium crystallite size 16.39 nm and 80.35 nm respectively. Samples with addition up to 3% of each NbC were mixed and mechanically milled by 3 routes. The route1 (R1) milled in planetary by 2 hours. The routes 2 (R2) and 3 (R3) milled in a conventional mill by 24 and 48 hours. Each milled samples and pure sample were cold compacted uniaxially in a cylindrical steel die (Ø 5 .0 mm) at 700 MPa, carried out in a vacuum furnace, heated at 1290°C, heating rate 20°C stand by 30 and 60 minutes. The samples containing NbC present higher densities and hardness than those without reinforcement. The results show that nanosized NbC particles precipitate on grain boundary. Thus, promote densification eliminating pores, control grain growth and increase the hardness values
Resumo:
The new oil reservoirs discoveries in onshore and ultra deep water offshore fields and complex trajectories require the optimization of procedures to reduce the stops operation during the well drilling, especially because the platforms and equipment high cost, and risks which are inherent to the operation. Among the most important aspects stands out the drilling fluids project and their behavior against different situations that may occur during the process. By means of sedimentation experiments, a correlation has been validated to determe the sedimentation particles velocity in variable viscosity fluids over time, applying the correction due to effective viscosity that is a shear rate and time function. The viscosity evolution over time was obtained by carrying out rheologic tests using a fixed shear rate, small enough to not interfere in the fluid gelling process. With the sedimentation particles velocity and the fluid viscosity over time equations an iterative procedure was proposed to determine the particles displacement over time. These equations were implemented in a case study to simulate the cuttings sedimentation generated in the oil well drilling during stops operation, especially in the connections and tripping, allowing the drilling fluid project in order to maintain the cuttings in suspension, avoiding risks, such as stuck pipe and in more drastic conditions, the loss of the well
Resumo:
Many challenges have been presented in petroleum industry. One of them is the preventing of fluids influx during drilling and cementing. Gas migration can occur as result of pressure imbalance inside the well when well pressure becomes lower than gas zone pressure and in cementing operation this occurs during cement slurry transition period (solid to fluid). In this work it was developed a methodology to evaluate gas migration during drilling and cementing operations. It was considered gel strength concept and through experimental tests determined gas migration initial time. A mechanistic model was developed to obtain equation that evaluates bubble displacement through the fluid while it gels. Being a time-dependant behavior, dynamic rheological measurements were made to evaluate viscosity along the time. For drilling fluids analyzed it was verified that it is desirable fast and non-progressive gelation in order to reduce gas migration without affect operational window (difference between pore and fracture pressure). For cement slurries analyzed, the most appropriate is that remains fluid for more time below critical gel strength, maintaining hydrostatic pressure above gas zone pressure, and after that gels quickly, reducing gas migration. The model developed simulates previously operational conditions and allow changes in operational and fluids design to obtain a safer condition for well construction
Resumo:
Discrepancies between classical model predictions and experimental data for deep bed filtration have been reported by various authors. In order to understand these discrepancies, an analytic continuum model for deep bed filtration is proposed. In this model, a filter coefficient is attributed to each distinct retention mechanism (straining, diffusion, gravity interception, etc.). It was shown that these coefficients generally cannot be merged into an effective filter coefficient, as considered in the classical model. Furthermore, the derived analytic solutions for the proposed model were applied for fitting experimental data, and a very good agreement between experimental data and proposed model predictions were obtained. Comparison of the obtained results with empirical correlations allowed identifying the dominant retention mechanisms. In addition, it was shown that the larger the ratio of particle to pore sizes, the more intensive the straining mechanism and the larger the discrepancies between experimental data and classical model predictions. The classical model and proposed model were compared via statistical analysis. The obtained p values allow concluding that the proposed model should be preferred especially when straining plays an important role. In addition, deep bed filtration with finite retention capacity was studied. This work also involves the study of filtration of particles through porous media with a finite capacity of filtration. It was observed, in this case, that is necessary to consider changes in the boundary conditions through time evolution. It was obtained a solution for such a model using different functions of filtration coefficients. Besides that, it was shown how to build a solution for any filtration coefficient. It was seen that, even considering the same filtration coefficient, the classic model and the one here propposed, show different predictions for the concentration of particles retained in the porous media and for the suspended particles at the exit of the media
Resumo:
This work develops a methodology for defining the maximum active power being injected into predefined nodes in the studied distribution networks, considering the possibility of multiple accesses of generating units. The definition of these maximum values is obtained from an optimization study, in which further losses should not exceed those of the base case, i.e., without the presence of distributed generation. The restrictions on the loading of the branches and voltages of the system are respected. To face the problem it is proposed an algorithm, which is based on the numerical method called particle swarm optimization, applied to the study of AC conventional load flow and optimal load flow for maximizing the penetration of distributed generation. Alternatively, the Newton-Raphson method was incorporated to resolution of the load flow. The computer program is performed with the SCILAB software. The proposed algorithm is tested with the data from the IEEE network with 14 nodes and from another network, this one from the Rio Grande do Norte State, at a high voltage (69 kV), with 25 nodes. The algorithm defines allowed values of nominal active power of distributed generation, in percentage terms relative to the demand of the network, from reference values
Resumo:
The present study describes the stability and rheological behavior of suspensions of poly (N-isopropylacrylamide) (PNIPAM), poly (N-isopropylacrylamide)-chitosan (PNIPAMCS), and poly (N-isopropylacrylamide)-chitosan-poly (acrylic acid) (PNIPAM-CS-PAA) crosslinked particles sensitive to pH and temperature. These dual-sensitive materials were simply obtained by one-pot method, via free-radical precipitation copolymerization with potassium persulfate, using N,N -methylenebisacrylamide (MBA) as a crosslinking agent. Incorporation of the precursor materials into the chemical networks was confirmed by elementary analysis and infrared spectroscopy. The influence of external stimuli such as pH and temperature, or both, on particle behavior was investigated through rheological measurements, visual stability tests and analytical centrifugation. The PNIPAM-CS particles showed higher stability in acid and neutral media, whereas PNIPAM-CS-PAA particles were more stable in neutral and alkaline media, both below and above the LCST of poly (Nisopropylacrylamide) (stability data). This is due to different interparticle interactions, as well as those between the particles and the medium (also evidenced by rheological data), which were also influenced by the pH and temperature of the medium. Based on the results obtained, we found that the introduction of pH-sensitive polymers to crosslinked poly (Nisopropylacrylamide) particles not only produced dual-sensitive materials, but allowed particle stability to be adjusted, making phase separation faster or slower, depending on the desired application. Thus, it is possible to adapt the material to different media
Resumo:
Among the polymers that stand out most in recent decades, chitosan, a biopolymer with physico-chemical and biological promising properties has been the subject of a broad field of research. Chitosan comes as a great choice in the field of adsorption, due to their adsorbents properties, low cost and abundance. The presence of amino groups in its chain govern the majority of their properties and define which application a sample of chitosan may be used, so it is essential to determine their average degree of deacetylation. In this work we developed kinetic and equilibrium studies to monitor and characterize the adsorption process of two drugs, tetracycline hydrochloride and sodium cromoglycate, in chitosan particles. Kinetic models and the adsorption isotherms were applied to the experimental data. For both studies, the zeta potential analyzes were also performed. The adsorption of each drug showed distinct aspects. Through the studies developed in this work was possible to describe a kinetic model for the adsorption of tetracycline on chitosan particles, thus demonstrating that it can be described by two kinetics of adsorption, one for protonated tetracycline and another one for unprotonated tetracycline. In the adsorption of sodium cromoglycate on chitosan particles, equilibrium studies were developed at different temperatures, allowing the determination of thermodynamic parameters
Resumo:
Due to its physico-chemical and biological properties, related to the abundance and low cost of raw material, chitosan has been recognized as a material of wide application in various fields, such as in drug delivery systems. Many of these properties are associated with the presence of amino groups in its polymer chain. A proper determination of these amino groups is very important, in order to properly specify if a given chitosan sample can be used in a particular application. Thus, in this work, initially, a comparison between the determination of the deacetylation degree by conductometry and elemental analysis was carried out using a detailed analysis of error propagation. It was shown that the conductometric analysis resulted in a simple and safe method for the determining the degree of deacetylation of chitosan. Subsequently, experiments were performed to monitor and characterize the adsorption of tetracycline on chitosan particles through kinetic and equilibrium studies. The main models of kinetics and adsorption isotherms, widely used to describe the adsorption on wastewater treatment systems and the drug loading, were used to treat the experimental data. Firstly, it was shown that an apparent linear t/q(t) × t relationship did not imply in a pseudo-second-order adsorption kinetics, differently of what has been repeatedly reported in the literature. It was found that this misinterpretation can be avoided by using non-linear regression. Finally, the adsorption of tetracycline on chitosan particles was analyzed using insights obtained from theoretical analysis, and the parameters generated were used to analyze the kinetics of adsorption, the isotherm of adsorption and to ropose a mechanism of adsorption
Resumo:
Textile activity results in effluents with a variety of dyes. Among the several processes for dye-uptaking from these wastewaters, sorption is one of the most effective methods, chitosan being a very promising alternative for this end. The sorption of Methyl Orange by chitosan crosslinked particles was approached using equilibrium and kinetic analyses at different pH s. Besides the standard pseudo-order analysis normally effectuated (i.e. pseudo-first-order and pseudo-second-order), a novel approach involving a pseudo-nth-order kinetics was used, nbeing determined via non-linear regression, using the Levenberg-Marquardt method. Zeta potential measurements indicated that electrostatic interactions were important for the sorption process. Regarding equilibrium experiments, data were well fitted to a hybrid Langmuir-Freundlich isotherm, and estimated Gibbs free energy of adsorption as a function of mass of dye per area of chitosan showed that the process of adsorption becomes more homogeneous as the pH of the continuous phase decreased. Considering the kinetics of sorption, although a pseudo-nth-order description yielded good fits, a kinetic equation involving diffusion adsorption phenomena was found to be more consistent in terms of a physicochemical description of the sorption process