7 resultados para Energy Harvesting, Convertitori di potenza, Maximum Power Point Tracking, Applicazioni low power
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The scarcity of natural resources and the search for alternative energy sources promote a rapid change in the energy world. Among the renewable energy sources, solar energy is the most promising, presenting technology of greatest growth rate nowadays. Researchers around the world are seeking ways to facilitate their progress, developing technologies with higher efficiency and lower cost. As a contribution to global progress, this master thesis proposes the development of a strategy of maximum power tracking based on perturbation and observation method for photovoltaic systems. The proposed control strategy is based on active power balance of the system, with a reduced number of sensors. It also allows the PV system to act as a regulator of the power quality at the point of commom coupling (PCC), compensating the harmonic distortion and power factor of the current netw
Resumo:
Low voltage solar panels increase the reliability of solar panels due to reduction of in series associations the configurations of photovoltaic cells. The low voltage generation requires DCDC converters devices with high efficiency, enabling raise and regulate the output voltage. This study analyzes the performance of a photovoltaic panel of Solarex, MSX model 77, configured to generate an open circuit voltage of 10.5 V, with load voltage of 8.5 V, with short circuit current of 9 A and a power of 77 W. The solar panel was assembled in the isolated photovoltaic system configuration, with and without energy storage as an interface with a DCDC converter, Booster topology. The converter was designed and fabricated using SMD (Surface Mounted Devices) technology IC (integrated circuit) that regulates its output voltage at 14.2 V, with an efficiency of 87% and providing the load a maximum power of 20.88 W. The system was installed and instrumented for measurement and acquisition of the following data: luminosities, average global radiation (data of INPE Instituto Nacional de Pesquisas Espaciais), solar panel and environment temperatures, solar panel and DC-DC converter output voltages, panel, inverter, and battery charge output currents. The photovoltaic system was initially tested in the laboratory (simulating its functioning in ideal conditions of operation) and then subjected to testing in real field conditions. The panel inclination angle was set at 5.5°, consistent with the latitude of Natal city. Factors such as climatic conditions (simultaneous variations of temperature, solar luminosities and ra diation on the panel), values of load resistance, lower limit of the maximum power required by the load (20.88 W) were predominant factors that panel does not operate with energy efficiency levels greater than 5 to 6%. The average converter efficiency designed in the field test reached 95%
Resumo:
The humanity reached a time of unprecedented technological development. Science has achieved and continues to achieve technologies that allowed increasingly to understand the universe and the laws which govern it, and also try to coexist without destroying the planet we live on. One of the main challenges of the XXI century is to seek and increase new sources of clean energy, renewable and able to sustain our growth and lifestyle. It is the duty of every researcher engage and contribute in this race of energy. In this context, wind power presents itself as one of the great promises for the future of electricity generation . Despite being a bit older than other sources of renewable energy, wind power still presents a wide field for improvement. The development of new techniques for control of the generator along with the development of research laboratories specializing in wind generation are one of the key points to improve the performance, efficiency and reliability of the system. Appropriate control of back-to-back converter scheme allows wind turbines based on the doubly-fed induction generator to operate in the variable-speed mode, whose benefits include maximum power extraction, reactive power injection and mechanical stress reduction. The generator-side converter provides control of active and reactive power injected into the grid, whereas the grid-side converter provides control of the DC link voltage and bi-directional power flow. The conventional control structure uses PI controllers with feed-forward compensation of cross-coupling dq terms. This control technique is sensitive to model uncertainties and the compensation of dynamic dq terms results on a competing control strategy. Therefore, to overcome these problems, it is proposed in this thesis a robust internal model based state-feedback control structure in order to eliminate the cross-coupling terms and thereby improve the generator drive as well as its dynamic behavior during sudden changes in wind speed. It is compared the conventional control approach with the proposed control technique for DFIG wind turbine control under both steady and gust wind conditions. Moreover, it is also proposed in this thesis an wind turbine emulator, which was developed to recreate in laboratory a realistic condition and to submit the generator to several wind speed conditions.
Resumo:
Generation systems, using renewable sources, are becoming increasingly popular due to the need for increased use of electricity. Currently, renewables sources have a role to cooperate with conventional generation, due to the system limitation in delivering the required power, the need for reduction of unwanted effects from sources that use fossil fuels (pollution) and the difficulty of building new transmission and/or distribution lines. This cooperation takes place through distributed generation. Therefore, this work proposes a control strategy for the interconnection of a PV (Photovoltaic) system generation distributed with a three-phase power grid through a connection filter the type LCL. The compensation of power quality at point of common coupling (PCC) is performed ensuring that the mains supply or consume only active power and that his currents have low distorcion. Unlike traditional techniques which require schemes for harmonic detection, the technique performs the harmonic compensation without the use of this schemes, controlling the output currents of the system in an indirect way. So that there is effective control of the DC (Direct Current) bus voltage is used the robust controller mode dual DSMPI (Dual-Sliding Mode-Proportional Integral), that behaves as a sliding mode controller SM-PI (Sliding Mode-Proportional Integral) during the transition and like a conventional PI (Proportional Integral) in the steady-state. For control of current is used to repetitive control strategy, which are used double sequence controllers (DSC) tuned to the fundamental component, the fifth and seventh harmonic. The output phase current are aligned with the phase angle of the utility voltage vector obtained from the use of a SRF-PLL (Synchronous Reference Frame Phase-Locked-Loop). In order to obtain the maximum power from the PV array is used a MPPT (Maximum Power Point Tracking) algorithm without the need for adding sensors. Experimental results are presented to demonstrate the effectiveness of the proposed control system.
Resumo:
This work describes the study, the analysis, the project methodology and the constructive details of a high frequency DC/AC resonant series converter using sequential commutation techniques for the excitation of an inductive coupled thermal plasma torch. The aim of this thesis is to show the new modulation technique potentialities and to present a technological option for the high-frequency electronic power converters development. The resonant converter operates at 50 kW output power under a 400 kHz frequency and it is constituted by inverter cells using ultra-fast IGBT devices. In order to minimize the turn-off losses, the inverter cells operates in a ZVS mode referred by a modified PLL loop that maintains this condition stable, despite the load variations. The sequential pulse gating command strategy used it allows to operate the IGBT devices on its maximum power limits using the derating and destressing current scheme, as well as it propitiates a frequency multiplication of the inverters set. The output converter is connected to a series resonant circuit constituted by the applicator ICTP torch, a compensation capacitor and an impedance matching RF transformer. At the final, are presented the experimental results and the many tests achieved in laboratory as form to validate the proposed new technique
Resumo:
This work is the analysis of a structure of the microstrip antenna designed for application in ultra wide band systems (Ultra Wideband - UWB). This is a prospective analytical study where they tested the changes in the geometry of the antenna, observing their suitability to the proposed objectives. It is known that the UWB antenna must operate in a range of at least 500 MHz, and answer a fractional bandwidth greater than or equal to 25%. It is also desirable that the antenna meets the specifications of track determined by FCC - Federal Communication Commission, which regulates the system in 2002 designating the UWB bandwidth of 7.5 GHz, a range that varies from 3.1 GHz to 10, 6 GHz. by setting the maximum power spectral density of operation in -41.3 dB / MHz, and defining the fractional bandwidth by 20%. The study starts of a structure of geometry in the form of stylized @, which evolves through changes in its form, in simulated commercial software CST MICROWAVE STUDIO, version 5.3.1, and then tested using the ANSOFT HFSS, version 9. These variations, based on observations of publications available from literature referring to the microstrip monopole planar antennas. As a result it is proposed an antenna, called Monopole Antenna Planar Spiral Almost Rectangular for applications in UWB systems - AMQEUWB, which presents simulated and measured results satisfactory, consistent with the objectives of the study. Some proposals for future work are mentioned
Resumo:
Energy is a vital resource for social and economic development. In the present scenario, the search for alternative energy sources has become fundamental, especially after the oil crises between 1973 and 1979, the Chernobyl nuclear accident in 1986 and the Kyoto Protocol in 1997. The demand for the development of new alternative energy sources aims to complement existing forms allows to meet the demand for energy consumption with greater security. Brazil, with the guideline of not dirtying the energy matrix by the fossil fuels exploitation and the recent energy crisis caused by the lack of rains, directs energy policies for the development of other renewable energy sources, complementing the hydric. This country is one of the countries that stand out for power generation capacity from the winds in several areas, especially Rio Grande do Norte (RN), which is one of the states with highest installed power and great potential to be explored. In this context arises the purpose of this work to identify the incentive to develop policies of wind energy in Rio Grande do Norte. The study was conducted by a qualitative methodology of data analysis called content analysis, oriented for towards message characteristics, its informational value, the words, arguments and ideas expressed in it, constituting a thematic analysis. To collect the data interviews were conducted with managers of major organizations related to wind energy in Brazil and in the state of Rio Grande do Norte. The identification of incentive policies was achieved in three stages: the first seeking incentives policies in national terms, which are applied to all states, the second with the questionnaire application and the third to research and data collection for the development of the installed power of the RN as compared to other states. At the end, the results demonstrated hat in Rio Grande do Norte state there is no incentive policy for the development of wind power set and consolidated, specific actions in order to optimize the bureaucratic issues related to wind farms, especially on environmental issues. The absence of this policy hinders the development of wind energy RN, considering result in reduced competitiveness and performance in recent energy auctions. Among the perceived obstacles include the lack of hand labor sufficient to achieve the reporting and analysis of environmental licenses, the lack of updating the wind Atlas of the state, a shortfall of tax incentives. Added to these difficulties excel barriers in infrastructure and logistics, with the lack of a suitable port for large loads and the need for reform, maintenance and duplication of roads and highways that are still loss-making. It is suggested as future work the relationship of the technology park of energy and the development of wind power in the state, the influence of the technology park to attract businesses and industries in the wind sector to settle in RN and a comparison of incentive policies to development of wind energy in the Brazilian states observing wind development in the same states under study.