2 resultados para Emulation

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, we propose a solution to solve the scalability problem found in collaborative, virtual and mixed reality environments of large scale, that use the hierarchical client-server model. Basically, we use a hierarchy of servers. When the capacity of a server is reached, a new server is created as a sun of the first one, and the system load is distributed between them (father and sun). We propose efficient tools and techniques for solving problems inherent to client-server model, as the definition of clusters of users, distribution and redistribution of users through the servers, and some mixing and filtering operations, that are necessary to reduce flow between servers. The new model was tested, in simulation, emulation and in interactive applications that were implemented. The results of these experimentations show enhancements in the traditional, previous models indicating the usability of the proposed in problems of all-to-all communications. This is the case of interactive games and other applications devoted to Internet (including multi-user environments) and interactive applications of the Brazilian Digital Television System, to be developed by the research group. Keywords: large scale virtual environments, interactive digital tv, distributed

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work proposes a computer simulator for sucker rod pumped vertical wells. The simulator is able to represent the dynamic behavior of the systems and the computation of several important parameters, allowing the easy visualization of several pertinent phenomena. The use of the simulator allows the execution of several tests at lower costs and shorter times, than real wells experiments. The simulation uses a model based on the dynamic behavior of the rod string. This dynamic model is represented by a second order partial differencial equation. Through this model, several common field situations can be verified. Moreover, the simulation includes 3D animations, facilitating the physical understanding of the process, due to a better visual interpretation of the phenomena. Another important characteristic is the emulation of the main sensors used in sucker rod pumping automation. The emulation of the sensors is implemented through a microcontrolled interface between the simulator and the industrial controllers. By means of this interface, the controllers interpret the simulator as a real well. A "fault module" was included in the simulator. This module incorporates the six more important faults found in sucker rod pumping. Therefore, the analysis and verification of these problems through the simulator, allows the user to identify such situations that otherwise could be observed only in the field. The simulation of these faults receives a different treatment due to the different boundary conditions imposed to the numeric solution of the problem. Possible applications of the simulator are: the design and analysis of wells, training of technicians and engineers, execution of tests in controllers and supervisory systems, and validation of control algorithms