14 resultados para Emplacement

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Xaréu Oil Field, located in the center-southern portion of the Mundaú Sub-Basin (eastern portion of the Ceará Basin), is characterized by a main Iramework of NW-trending and NE-dipping faults. The faults in the Xaréu Oil Field, among which the Xaréu Fautt stands out, are arranged according to an extensional-listriclan, rooted on a detachment surface corresponding to the Mundaú Fault, the border fautt of Mundaú Sub-Basin. During the tectonic-structural evolution of the Xaréu Oil Field and the Mundaú Sub-Basin, the Mundaú Fault played a crucial role on the control of the geometry of both compartments. The main carbonatic unit in the Xaréu Oil Field, named the Trairí Member(Paracuru Formation of Late Aptian to Early Albian age), contains the largest oil volume in the field, concentrated in structurally-controlled accumulations. The Trairí Member is composed by a variety of carbonatic rocks (massive, bedded or laminated calcilutites, ostracodites, calcarenites and carbonatic rudites, all of them presenting variable degrees of dolomitization). The carbonatic rocks are interbedded into thick packages of black shales and marls, besides local beds of siliciclastic conglomerates, sandstones, siltnes and argillites. From the spatial association and the genetic relationships between the carbonatic and siliciclastic units, it is possible to group them in three lithofacies associations (Marginal Plain, Ramp and Lacustrine Interior) that, together, were developed in a lacustrine system associated to a marginal sabkha. Structural studies based on drill coresthat sample the Trairí Member in the Xaréu Oil Field allowed to characterize two generations of meso- to microscale structures: the D1 group presents a typical hydroplastic character, being characterized by intra/interstratal to oblique-bedding shear zones. The hydroplastic character related to these structures allowed to infer their development at an early-lithilication stage of the Trairí Member, leading to infer an Early Cretaceous age to them. The second group of structures identified in the drill cores, nominated D2 and ascribed to a Neogene age, presents a strictly brttle character, being typilied by normal faults and slickenfibers of re-crystallized clayminerals, ali olthem displaying variable orientations. Although the present faults in the Xaréu Oil Field (and, consequently, in the Mundaú Sub-Basin) were classically relerred as struetures of essentially normal displacement, the kinematics analysis of the meso-to microscaie D1 struetures in the drill cores led to deline oblique displacements (normal with a clockwise strike-slip component) to these faults, indicating a main tectonic transport to ENE. These oblique movements would be responsible for the installation of a transtensive context in the Mundaú Sub-Basin, as part of the transcurrent to translormant opening of the Atlantic Equatorial Margin. The balancing of four struetural cross-sections ofthe Xaréu Oil Field indicates that the Mundaú Fault was responsible for more than 50% of the total stretching (ß factor) registered during the Early Aptian. At the initial stages of the "rifting", during Early Aptianuntil the Holocene, the Mundaú Sub-Basin (and consequently the Xaréu Oil Fleld) accumulated a total stretching between 1.21 and 1.23; in other words, the crust in this segment of the Atlantic Equatorial Margin was subjeeted to an elongation of about 20%. From estimates of oblique displacements related to the faults, it ws possible to construct diagrams that allow the determination of stretching factors related to these displacements. Using these diagrams and assuming the sense 01 dominant teetonictransport towards ENE, it was possible to calculate the real stretching lactors related to the oblique movement 0 of the faults in the Mundaú Sub-Basin. which reached actual values between 1.28 and 1.42. ln addnion to the tectonic-structural studies in the Xaréu Oil Field, the interpretation of remote sensing products, coupled wnh characterization of terrain analogues in seleeted areas along the northern Ceará State (continental margins of the Ceará and Potiguar basins), provided addnional data and constraints about the teetonic-structural evolution of the oil lield. The work at the analogue sites was particularly effective in the recognition and mapping, in semidetail scale, several generations of struetures originated under a brittle regime. Ali the obtained information (from the Xaréu Oil Field, the remote sensor data and the terrain analogues) were jointly interpreted, culminating with the proposnion of an evolutionary model lor this segment of the Atlantic Equatorial Margin; this model that can be applied to the whole Margin, as well. This segmentof the Atlantic Equatorial Margin was delormedin an early E-W (when considered lhe present-day position of the South American Plate) transcurrent to transform regime with dextral kinematics, started Irom, at least, the Early Aptian, which left its record in several outcrops along the continental margin of the Ceará State and specilically in the Xaréu off Field. The continuous operation of the regime, through the Albian and later periods, led to the definitive separation between the South American and African plates, with the formation of oceanic lithosphere between the two continental blocks, due to the emplacement off spreading centers. This process involved the subsequent transition of the transcurrent to a translorm dextral regime, creating lhe Equatorial Atlantic Oceano With the separation between the South American and African plates already completed and the increasing separation between lhe continental masses, other tecton ic mechanisms began to act during the Cenozoic (even though the Cretaceous tectonic regime lasted until the Neogene), like an E-W compressive stress líeld (related to the spreading olthe oceanic floor along lhe M id-Atlantic Ridge and to the compression of the Andean Chain) effective Irom the Late Cretaceous, and a state of general extension olthe horizontal surface (due to the thermal uplift ofthe central portion of Borborema Province), effective during the Neogene. The overlap of these mechanisms during the Cenozoic led to the imprint of a complex tectonic framework, which apparently influenced the migration and entrapment 01 hydrocarbon in the Ceará Basin

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The area studied forms a thin NNE-directed belt situated south of Recife town (Pernambuco state), northeastern Brazil. Geologically, it comprises the Pernambuco Basin (PB), which is limited by the Pernambuco Lineament to the north, the Maragogi high to the south and the Pernambuco Alagoas massif to the west, all of them with Precambrian age. This thesis reports the results obtained for the Cabo Magmatic Province (CMP), aiming the characterization of the geology, stratigraphy, geochronology, geochemistry and petrogenesis of the Cretaceous igneous rocks presented in the PB. The PB is composed of the Cabo Formation (rift phase) at the base (polymictic conglomerates, sandstones, shales), an intermediate unit, the Estiva Formation (marbles and argillites), and, at the top, the Algodoais Formation (monomictic conglomerates, sandstones, shales). The CMP is represented by trachytes, rhyolites, pyroclastics (ignimbrites), basalts / trachy-andesites, monzonites and alkali-feldspar granite, which occur as dykes, flows, sills, laccoliths and plugs. Field observations and well descriptions show that the majority of the magmatic rocks have intrusive contacts with the Cabo Formation, although some occurrences are also suggestive of synchronism between volcanism and siliciclastic sedimentation. 40Ar/39Ar and zircon fission tracks for the magmatic rocks indicate an average age of 102 r 1 Ma for the CMP. This age represents an expressive event in the province and is detected in all igneous dated materials. It is considered as a minimum age (Albian) for the magmatic episode and the peak of the rift phase in the PB. The 40Ar/39Ar dates are about 10-14 Ma younger than published palynologic ages for this basin. Geochemically, the CMP may be divided in two major groups; i) a transitional to alkaline suite, constituted by basalts to trachy-andesites (types with fine-grained textures and phenocrysts of sanidine and plagioclase), trachytes (porphyrytic texture, with phenocrysts of sanidine and plagioclase) and monzonites; ii) a alkaline suite, highly fractionated, acidic volcano-plutonic association, formed by four subtypes (pyroclastic flows ignimbrites, fine-to medium-grained rhyolites, a high level granite, and later rhyolites). These four types are distinguished essentially by field aspects and petrographic and textural features. Compatible versus incompatible trace element concentrations and geochemical modeling based on both major and trace elements suggest the evolution through low pressure fractional crystallization for trachytes and other acidic rocks, whereas basalts / trachy-andesites and monzonites evolved by partial melting from a mantle source. Sr and Nd isotopes reveal two distinct sources for the rocks of the CMP. Concerning the acidic ones, the high initial Sr ratios (ISr = 0.7064-1.2295) and the negative HNd (-0.43 to -3.67) indicate a crustal source with mesoproterozoic model ages (TDM from 0.92 to 1.04 Ga). On the other hand, the basic to intermediate rocks have low ISr (0.7031-0.7042) and positive HNd (+1.28 to +1.98), which requires the depleted mantle as the most probable source; their model ages are in the range 0.61-0.66 Ga. However, the light rare earth enrichment of these rocks and partial melting modeling point to an incompatible-enriched lherzolitic mantle with very low quantity of garnet (1-3%). This apparent difference between geochemical and Nd isotopes may be resolved by assuming that the metasomatizing agent did not obliterate the original isotopic characteristics of the magmas. A 2 to 5% partial melting of this mantle at approximately 14 kbar and 1269oC account very well the basalts and trachy-andesites studied. By using these pressure and temperatures estimates for the generation of the basaltic to trachy-andesitic magma, it is determined a lithospheric stretching (E) of 2.5. This E value is an appropriated estimate for the sub-crustal stretching (astenospheric or the base of the lithosphere?) region under the Pernambuco Basin, the crustal stretching probably being lower. The integration of all data obtained in this thesis permits to interpret the magmatic evolution of the PB as follows; 1st) the partial melting of a garnet-bearing lherzolite generates incompatible-enriched basaltic, trachy-andesitic and monzonitic magmas; 2nd) the underplating of these basaltic magmas at the base of the continental crust triggers the partial melting of this crust, and thus originating the acidic magmas; 3rd) concomitantly with the previous stage, trachytic magmas were produced by fractionation from a monzonitic to trachy-andesitic liquid; 4th) the emplacement of the several magmas in superficial (e.g. flows) or sub-superficial (e.g. dykes, sills, domes, laccoliths) depths was almost synchronically, at about 102 r 1 Ma, and usually crosscutting the sedimentary rocks of the Cabo Formation. The presence of garnet in the lherzolitic mantle does not agree with pressures of about 14 kbar for the generation of the basaltic magma, as calculated based on chemical parameters. This can be resolved by admitting the astenospheric uplifting under the rift, which would place deep and hot material (mantle plume?) at sub-crustal depths. The generation of the magmas and their subsequent emplacement would be coupled with the crustal rifting of the PB, the border (NNE-SSW directed) and transfer (NW-SE directed) faults serving as conduits for the magma emplacement. Based on the E parameter and the integration of 40Ar/39Ar and palynologic data it is interpreted a maximum duration of 10-14 Ma for the rift phase (Cabo Formation clastic sedimentation and basic to acidic magmatism) of the PB

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The area studied is located on the north-easternmost portion of the Borborema Province, on the so-called São José de Campestre Massif, States of RN and PB, Northeast Brazil. Field relations and petrographic, geochemical and isotope data permitted the separation of five suites of plutonic rocks: alkali-feldspar granite (Caxexa Pluton), which constitutes the main subject of this dissertation, amphibole-biotite granite (Cabeçudo Pluton), biotite microgranite, gabbronorite to monzonite (Basic to Intermediate Suite) and aluminous granitoid. The Caxexa Pluton is laterally associated to the Remígio Pocinhos Shear Zone, with its emplacement along the mylonitic contact between the gneissic basement and the micashists. This pluton corresponds to a syntectonic intrusion elongated in the N-S direction, with about 50 km2 of outcropping surface. It is composed exclusively of alkali-feldspar granites, having clinopyroxene (aegirine-augite and hedenbergite), andradite-rich garnet, sphene and magnetite. It is classified geochemically as high silica rocks (>70 % wt), metaluminous to slightly peraluminous (normative corindon < 1%), with high total alkalis (>10% wt), Sr, iron number (#Fe=90-98) and agpaitic index (0.86-1.00), and positive europium anomaly. The Cabeçudo Pluton is composed of porphyritic rocks, commonly containing basic to intermediate magmatic enclaves often with mingling and mixing textures. Petrographically, it presents k-feldspar and plagioclase phenocrysts as the essential minerals, besides the accessories amphibole, biotite, sphene and magnetite. It is metaluminous and shows characteristics transitional between the calc-alkaline and alkaline series (or monzonitic subalkaline). Its REE content is greater than those ones of the Caxexa Pluton and biotite microgranite, and all spectra have negative europium anomalies. The biotite microgranites occur mainly on the central and eastern portion of the mapped area, as dykes and sheets with decimetric thickness, hosted principally in orthogneisses and micashists. Their field relationships as regards the Caxexa and Cabeçudo plutons suggested that they are late-tectonic intrusions. They are typically biotite granites, having also sphene, amphibole, allanite, opaques and zircon in the accessory assemblage. Geochemically they can be distinguished from the porphyritic types because the biotite microgranites are more evolved, peraluminous, and have more fractionated REE spectra. The Basic to Intermediate rocks form a volumetrically expressive elliptical, kilometric scale body on the Southeast, as well as sheets in micashists. They are classified as gabbronorites to monzonites, with the two pyroxenes and biotite, besides subordinated amounts of amphibole, sphene, ilmenite and allanite. These rocks do not show a well-defined geochemical trend, however they may possibly represent a monzonitic (shoshonitic) series. Their REE spectra have negative europium anomalies and REE contents greater than the other suites. The aluminous granitoids are volumetrically restricted, and have been observed in close association with migmatised micashists bordering the gabbronorite pluton. They are composed of almandine-rich garnet, andalusite, biotite and muscovite, and are akin to the peraluminous suites. Rb-Sr (whole rock) and Sm-Nd (whole-rock and mineral) isotopes furnished a minimum estimate of the crystallization (578±14 Ma) and the final resetting age of the Rb-Sr system (536±4 Ma) in the Caxexa Pluton. The aluminous granitoid has a Sm-Nd garnet age similar to that one of the Caxexa Pluton, that is 574±67 Ma. The strong interaction of shear bands and pegmatite dykes favoured the opening of the Rb-Sr system for the Caxexa Pluton and biotite microgranite. The amphibole-plagioclase geothermometer and the Al-in amphibole geobarometer indicate minimum conditions of 560°C and 7 kbar for the Cabeçudo Pluton, 730°C and 6 kbar for the microgranite and 743°C and 5 kbar for the basic to intermediate suite. The Zr saturation geothermometer reveals temperatures of respectively 855°C, 812°C and 957°C for those suites, whereas the Caxexa Pluton shows temperatures of around 757°C. The Caxexa, Cabeçudo and microgranites suites crystallized under high fO2 (presence of magnetite). On the other hand, the occurrence of ilmenite suggests less oxidant conditions in the basic to intermediate suite. Field relations demonstrate the intrusive character of the granitoids into a tectonically relatively stable continental crust. This is corroborated by petrographic and geochemical data, which suggest a late- or post-collisional tectonic context. It follows that the generation and emplacement of those granitoid suites is related to the latest events of the Brasiliano orogeny. Finally, the relationships between eNd (600 Ma), TDM (Nd) and initial Sr isotope ratio (ISr) do not permit to define the precise sources of the granitoids. Nevertheless, trace element modelling and isotopic comparisons suggest the participation of the metasomatised mantle in the generation of these suites, probably modified by different degrees of crustal contamination. In this way, a metasomatised mantle would not be a particular characteristic of the Neoproterozoic lithosphere, but a remarkable feature of this portion of the Borborema Province since Archaean and Paleoproterozoic times.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Great part of the gold mineralizations are associated with shearing zones through which circulate a great volume of fluids, that interact with the host rocks, originating leaching or precipitation of chemical elements, including gold. The studied mineralizations are inserted in the Seridó Belt. The tungsten mineralization in Brejuí Mine is hosted in calcsilicate rocks from Jucurutu Formation. The São Francisco auriferous mineralization has as host rocks mica-schists from Seridó Formation, while the Ponta da Serra and Fazenda Simpático mineralizations are hosted in orthogneisses of this fold belt basement. The research conducted on these mineralizations had the purpose of integrate the data of chemical elements behavior during the shearing/mineralizing event, and its influence on the isotopic systems Rb-Sr and Sm-Nd. The studies of chemical mobility in the auriferous mineralizations showed that elements that during the shearing displayed in general an immobile behavior were Al, Ti and Zr. Among the elements that were mobilized during the event, K and Rb showed mass gain in ali belts of transformed rocks, while the elements Ca, Na and Sr normally lost mass. Petrographic studies showed that the minerais biotite and plagioclase, in all investigated mineralizations, played an important role in the chemical reactions occurred in the transformed rocks to the generation of muscovite, cordierite and sillimanite, justifying the input of K to the formation of muscovite, and the release of Na and Ca from plagioclase to the fluid phase. In the São Francisco auriferous mineralization, the results of the Rb-Sr isotopic analysis yielded ages of 645 ± 19 Ma and 596 ± 17 Ma, with both samples, from original and transformed rocks. Two ages, 569 ± 20 Ma. and 554 ± 19 Ma., were obtained with samples frem the transformed rocks domain. These ages suggest that there were two metamorphic pulses during the emplacement of the mineralized shearing zone. The Sm-Nd data yielded TDM ages of 1,31 Ga and 1,26 Ga with 3Nd (0,6 Ga) of -0,26 e -0,40 for the original and final transformed rocks, respectively. In case of the orthogneisses of Caicó Complex, e.g. the Ponta da Serra and Fazenda Simpático mineralizations, the Rb-Sr data did not yield ages with geological significance. In the Ponta da Serra mineralization, the Sm-Nd isotopic data yielded T DM ages of 2,56 Ga and 2,63 Ga to the original rocks and of 2,71 Ga to the mineralized sheared rock, and values of 3Nd (2,0 Ga) between -3,70 e -5,42 to the original and sheared rock, respectively. In the Fazenda Simpático, Sm-Nd data yielded TDM between 2,65 and 2,69 Ga with values of 3Nd (2,0 Ga) between -5,25 e -5,52. Considering the Sm-Nd data, the TDM ages may be admitted as the age of the parental magma extraction, producer of the protoliths of the orthogneisses from Ponta da Serra and Fazenda Simpático mineralizations. The chemical mobility studies showed that in the basement hosted mineralizations, Rb achieved mass while Sr lost mass, as Sm as well as Nd were strongly mobilized. The Sm/Nd ratio remained constant, however, confirming the isochemical character of those elements. In the basement mineralizations, Rb-Sr ages are destituted of geological significance, because of the partial opening of the isotopic system during the tectono-metamorphic transformations. In the tungsten mineralization, the diagram Sm-Nd constructed with the whole-rock data of calcsilicatic and the high-temperature paragenesis (garnet, diopside and iron-pargasitic hornblende) indicated an 631 ± 24 Ma age, while with the whole-rock data and low-temperature paragenesis (vesuvianite, epidote and calcite), a 537 ± 107 Ma age was obtained. These ages, associated with the petrographic observations, suggest that there was a time gap among the hydrothernal events responsible by the formation of the high and low temperature paragenesis in the calcsilicatic rocks mineralized in scheelite

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Brasiliano Cycle in the Seridó Belt (NE Brazil) is regarded mostly as a crustal reworking event, characterized by transcurrent or transpressional shear zones which operated under high temperature and low pressure conditions. In the eastern domain of this belt- the so-called São José de Campestre Massif (SJCM), a transtensional deformation regime is evidenced by extensional components or structures associated to the strikeslip shear zones. The emplacement of the Neoproterozoic Brasiliano granitoids is strongly controled by these discontinuities. Located in the southern border of the SJCM, the Remígio-Pocinhos shear zone (RPSZ) displays, in its northern half, top to the SW extensional movement which progressively grade, towards its southern half, to a dextral strike-slip kinematics, defining a negative semi-flower structure. This shear zone is overprinted upon allocthonous metasediments of the Seridó Group and an older gneiss-migmatite complex, both of which containing metamorphic parageneses from high amphibolite to granulite facies (the latter restricted to the strike-slip zone), defining the peak conditions of deformation. Several granitoid plutons are found along this structure, emplaced coeval with the shearing event. Individually, such bodies do not exceed 30 km2 in outcropping area and are essentially parallel to the trend of the shear zone. Petrographic, textural and geochemical data allow to recognize five different granitoid suites along the RPSZ: porphyritic granites (Serra da Boa Vista and Jandaíra), alkaline granites (Serra do Algodão and Serra do Boqueirão) and medium to coarse-grained granites (Olivedos) as major plutons, while microgranite and aluminous leucogranite sheets occur as minor intrusions. The porphyritic granites are surrounded by metasediments and present sigmoidal or en cornue shapes parallel to the trend of the RPSZ, corroborating the dextral kinematics. Basic to intermediate igneous enclaves are commonly associated to these bodies, frequently displaying mingling textures with the host granitoids. Compositionally these plutons are made up by titanite-biotite monzogranites bearing amphibole and magnetite; they are peraluminous and show affinities to the monzonitic, subalkaline series. Peraluminous, ilmenite-bearing biotite monzogranites and titanite-biotite monzogranites correspond, respectivally, to the Olivedos pluton and the microgranites. The Olivedos body is hosted by metasediments, while the microgranites intrude the gneiss-migmatite complex. Being highly evolved rocks, samples from these granites plot in the crustal melt fields in discrimination diagrams. Nevertheless, their subtle alignment also looks consistent with a monzonitic, subalkaline affinity. These chemical parameters make them closer to the I-type granites. Alkaline, clearly syntectonic granites are also recognized along the RPSZ. The Serra do Algodão and Serra do Boqueirão bodies display elongated shapes parallel to the mylonite belt which runs between the northern, extensional domain and the southern strike-slip zone. The Serra do Algodão pluton shows a characteristic isoclinal fold shape structure. Compositionally they encompass aegirine-augite alkali-feldspar granites and quartz-bearing alkaline syenite bearing garnet (andradite) and magnetite plus ilmenite as opaque phases. These rocks vary from meta to peraluminous, being correlated to the A-type granites. Aluminous leucogranites bearing biotite + muscovite ± sillimanite ± garnet (S-type granites) are frequent but not volumetrically important along the RPSZ. These sheet-like bodies may be folded or boudinaged, representing partial melts extracted from the metasediments during the shear zone development. Whole-rock Rb-Sr isotope studies point to a minimum 554��10 Ma age for the crystalization of the porphyritic granites. The alkaline granites and the Olivedos granite produced ca. 530 Ma isochrons which look too young; such values probably represent the closure of the Rb-Sr radiometric clock after crystallization and deformation of the plutons, at least 575 Ma ago (Souza et al. 1998). The porphyritic and the alkaline granites crystallized under high oxygen fugacity conditions, as shown by the presence of both magnetite and hematite in these rocks. The presence of ilmenite in the Olivedos pluton suggests less oxidizing conditions. Amphibole and amphibole-plagioclase thermobarometers point to minimum conditions, around 750°C and 6 Kbars, for the crystallization of the porphyritic granites. The zirconium geothermometer indicates higher temperatures, in the order of 800°C, for the porphyritic granites, and 780°C for the Olivedos pluton. Such values agree with the thermobarometric data optained for the country rocks (5,7 Kbar and 765°C; Souza et al. 1998). The geochemical and isotope data set point to a lower crustal source for the porphyritic and the alkaline granites. Granulite facies quartz diorite to tonalite gneisses, belonging or akin to the gneiss-migmatite complex, probably dominate in the source regions. In the case of the alkaline rocks, subordinate contributions of mantle material may be present either as a mixing magma or as a previously added component to the source region. Tonalite to granodiorite gneisses, with some metasedimentary contribution, may be envisaged for the Olivedos granite. The diversity of granitoid rocks along the RPSZ is explained by its lithospheric dimension, allowing magma extraction at different levels, from the middle to lower crust down to the mantle. The presence of basic to intermediate enclaves, associated to the porphyritic granites, confirm the participation of mantle components in the magma extraction system along the RPSZ. This mega-structure is part of the network of Brasiliano-age shear zones, activated by continental collision and terrane welding processes at the end of the Neoproterozoic

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This dissertation describes the igneous suites of the Japi granitoid pluton, intrusive in the Paleoproterozoic gneiss-migmatite complex of the eastern domain of the Seridó Belt, northeastern Brazil. Field relations show that the pluton is affected by strong deformation associated to the Brasiliano orogeny (known as the D3 phase) , with a NW-trending extensionalleft-hand senestral shear zone (the Japi Shear Zone, JSZ) bordering the intrusive body to the west. Four plutonic suites are found in the main pluton and as satellyte intrusions, besides Iate pegmatite and pink leucogranites. An alkaline granitoid suite, dominated by syenogranites bearing sodic augite (and subordinate hornblende), define a main elliptical intrusion. In its northern part, this intrusion is made up by concentric sheets, contrasting with a smaller rounded stock to the south. These granites display a pervasive solid-state S>L fabric developed under high T conditions, characterized by plastic deformation of quartz and feldspar. It is especially, developed along the border of the pluton, with inward dips. A regular magmatic layering is present sometimes, parallel to the tectonic foliation. The syntectonic emplacement as regards to the Brasiliano (D3) event is indicated by the common occurrence of dykes and sheets along transtensional or extensional sites of the major structure. Field relations attest to the early emplacement of the alkaline granites as regards to the other suites. A basic-to-intermediate suite occurs as a western satellyte body and occupying the southern tail of the main alkaline pluton. It comprises a wide variety of compositional terms, including primitive gabbros and gabbro-norites, differentiated to monzonitic intermediate facies containing amphibole and biotite as their main mafic phases. These rocks display transitional high-K calc-alkaline to shoshonitic affinities. Porphyritic monzogranite suítes commonly occur as dykes and minor intrusives, isolated or associated with the basic-tointermediate rocks. In the latter case, magma mingling and mixing features attest that these are contemporaneous igneous suites. These granites show K-feldspar phenocrysts and a hornblende+biotite+titanite assemblage, displaying subalkaline/monzonitic geochemical affinities. Both suites exhibit SL magmatic fabrics overprinting or transitional to solid-state D3 deformation related to the JSI. Chemical data clearly show that they are related to different parental magmas. Finally, a microgranite suite occurs along a few topographic ridges paralell to the JSI. It comprises dominantly granodiorites with a mineralogy similar to the one of the porphyritic granitoids. However, discriminant diagrams show their distinct calc-alkaline affinity. The granodiorites display an essencially magmatic fabric, even though an incipient D3 solid-state structure may be developed along the JSI. Intrusion relationships with the previous suites, as well as regards to the D3 structures, point to their Iate emplacement. All these suites are intrusive in a Paleoproterozoic, high-grade gneiss-migmatite complex affected by two previous deformation phases (D1, D2). The fabrics associated with these earlier events are folded and overprinted by the younger D3 structures along the JSZ. The younger deformation is characterized by NE-dipping foliations and N/NE-plunging stretching lineations. In the JSZ northern termination the foliation acquires an ENE orientation, containing a stretching lineation plunging to the south. Symmetric kinematic cri teria developed at this site confirms the transpressional termination of the JSZ, as also shown by orthorrombic quartz c-axis patterns. E-W-trending d extra I shear zones developed in the central part of the JSZ are interpreted as antithetic structures associated to the transtensional deformation along the JSZ. This is consistent with its extensional-transcurrent kinematics and a flat-and-ramp geometry at depth, as shown by gravimetric data. The lateral displacement of the negative residual Bouguer anomalies, as regards to the main outcropping alkaline pluton, may be modelized by other deeper-seated granite bodies. Based on numerical modelling it was possible to infer two distinct intrusion styles for the alkaline pluton. The calculated model values are consistent with an emplacement by sheeting for the northern body, as already suggested by satellyte imagery and field mapping. On the other hand, the results point to a transition towards a diapir-related style associated to the smaller. southern stock. This difference in intrusion styles may relate to intensity variations and transtensional sites of the shear deformation along the JSZ. Trace element and Sr and Nd isotopes of the alkaline granites are compatible with their derivation trom a more basic crustal source, as compared to the presently outcropping highgrade gneisses, with participation (or alternatively dominated by) of an enriched lithospheric mantle component. Like other igneous suites in the Seridó Belt, the high LlL contents and fractionated REE patterns of the basic rocks also point to an enriched mantle as the source for this kind of magmatism. Geochemical and isotope data are compatible with a lower crustal origin for the porphyritic granites. On the basis of the strong control of the JSZ on the emplacement of lower crustal (porphyritic and alkaline granites) or lithospheric mantle (basic rocks, alkaline granites or a component of them) magmas, one may infer a deep root for this structure, bearing an important role in magma extraction, transport and emplacement in the Japi region, eastern domain of the Seridó Belt

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This dissertation deals with sedimentological and structural framework of the siliciclastic rock of the Serra do Martins Formation (FSM) in the Portalegre, Martins and Santana plateau, located to the south of Potiguar Basin, in the southwest and central Rio Grande do Norte state. This formation, regarded as of Oligo-Miocene age based on intrusive relations of the Miocene Macau volcanics, has a still disputable age due to the lack of appropriate bio and/or chronostratigraphic markers. The FSSM deposits crop out along 650 to 750 m high plateau, as a remanescent sedimentary cover directly overlying topographically uplifted pre-cambrian crystalline rocks. During the last decades, these deposits were interpreted according to a Tertiary paleoclimatic evolutionary model, associated to pedogenetic processes. The sedimentological characterization of the FSM was done through a detailed study of its facies, petrography and diagenetic features. The facies study was based on description of field relations, textures and structures, the piling up of the strata and their lateral variations. The FSM was deposited by an anastomosing to coarse-meandering fluvial system, including deposits of lag, cannel-fill, ouver-bank and flood plain. The petrographic composition of the sediments, coupled to their facies and paleocurrent directions, suggest a rather distal sourcearea, to the south of the present plateau. The diagenetic study identified an incipient grain mechanical compaction, pronounced dissolution of the framework, matrix and/or cement components, intense precipitation of kaolinite, silic and, eventually, iron oxides, besides mechanical infiltration of the clays. Most of these events, regarded in the literature as associated to near-surface conditions (eo or telodiagenesis), indicate the FSM sediments were never deeply buried. Topographic relations along longitudinal and transversal sections reaching the Potiguar Basin to the north identified regional dips that allow to discuss stratigraphic correlations between the FSM and the basin formations. The sedimentological features of the different units and the intrusive relations of the Macau volcanics were also considered in these correlations,which support the Oligo-Miocene age previously accepted for the FSM. Concerning the tectonic framework of the FSM, this work investigated the pre-cambrian to cretaceous heritage and the cenozoic deformation, allowing the recognition of pre-, sin and post-FSM structures. The crystalline basement, belonging to the Seridó Belt, displays NE and WNW foliation trends related to the Brasiliano-age ductile shear zones. In this terrain, brittle-ductile and brittle NE- and NW-trending structures, associated with extensional joints filled with pegmatites and quartz veins, are related to an E-W compression by the end of Brasiliano Cycle. The E-W joints and NE-trending fractures were reactivated by N-S to N-S to NW extension during late Jurassic to Cretaceous times, controlling the emplacement of the Rio Ceará-Mirim basic dyke swarm and the opening of the Potiguar rift basin

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The of Serrinha plutonic suite, northeastern portion of the Borborema Province (NE Brazil), is characterized by a voluminous and diversified magmatism of Neoproterozoic age, intrusive in the Archean to Paleoproterozoic gneissic-migmatitic basement of the São José de Campestre massif. Field relations and petrographic and geochemical data allowed us to individualize different lithologic types among this plutonic suite, which is represented by intermediate to mafic enclaves, porphyritic diorites, porphyritic granitoids, porphyritic granodiorites, microporphyritic granites and dykes/sheets of microgranite. The intermediate-to-mafic enclaves occur associated with porphyritic granitoids, showing mixture textures. The porphyrytic diorites occur as isolated bodies, generally associated with intermediate-to-mafic enclaves and locally as enclaves within porphyritic granites. The granodiorites represent mixing between an intermediate to mafic magma with an acidic one. The micropophyritic granites occur as isolated small bodies, generally deformed, while the microgranite dykes/sheets crosscut all the previous granitoids. A U-Pb zircon age of 576 + 3 Ma was obtained for the Serrinha granite. This age is interpreted as age of the peak of the regional ductile deformational event (D3) and of the associated the E-W Rio Jacu shear zone, which control the emplacement of the Neoproterozoic syntectonic plutons. The porphyrytic granitoids show monzogranitic composition, transitional between peraluminous and metaluminous types, typically of the high potassium subalkaline-calc-alkaline series. The intermediate-to-mafic enclaves present vary from quartz diorite to tonalite/granodiorite, with metaluminous, shoshonitic affinity. The diorites are generally quartz-monzodiorite in composition, with metaluminous, subalkaline affinity. They display coarse-grained, inequigranular, porphyrytic texture, with predominance of plagioclase phenocrystals immersed in a matrix composed of biotite and pyroxenes. The microporphyrytic granites are essentially monzogranites of fine- to medium-grained texture, whereas microgranite dikes/sheets varying from monzogranites to syenogranites, with fine to media texture, equigranular. The diversified magmatism occurring at a relatively small surface associated with shear zones, suggests lithospheric dimensions for such structures, with magma extractions from different depths within the lower crust and upper mantle. The geological, geochemical and geochronological characteristics of the Serrinha plutonic suite suggest a pos-collisional geodynamic context for the Neoproterozoic magmatism. Thermobarometric data show emplacement conditions in the range 5-6 kbar (AlTamphibole) and 730-740°C (plagioclase-amphibole) for the porphyrytic granitoids (Serrinha body) and the intermediate-to-mafic enclaves

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the last decades, analogue modelling has been used in geology to improve the knowledge of how geological structures are nucleated, how they grow and what are the main important points in such processes. The use of this tool in the oil industry, to help seismic interpretations and mainly to search for structural traps contributed to disseminate the use of this tool in the literature. Nowadays, physical modelling has a large field of applications, since landslide to granite emplacement along shear zones. In this work, we deal with physical modelling to study the influence of mechanical stratifications in the nucleation and development of faults and fractures in a context of orthogonal and conjugated oblique basins. To simulate a mechanical stratigraphy we used different materials, with distinct physical proprieties, such as gypsum powder, glass beads, dry clay and quartz sand. Some experiments were run along with a PIV (Particle Image Velocimetry), an instrument that shows the movement of the particles to each deformation moment. Two series of experiments were studied: i) Series MO: We tested the development of normal faults in a context of an orthogonal (to the extension direction) basin. Experiments were run taking into account the change of materials and strata thickness. Some experiments were done with sintectonic sedimentation. We registered differences in the nucleation and growth of faults in layers with different rheological behavior. The gypsum powder layer behaves in a more competent mode, which generates a great number of high angle fractures. These fractures evolve to faults that exhibit a higher dip than when they cross less competent layers, like the one of quartz sand. This competent layer exhibits faulted blocks arranged in a typical domino-style. Cataclastic breccias developed along the faults affecting the competent layers and showed different evolutional history, depending on the deforming stratigraphic sequence; ii) Series MOS2: Normal faults were analyzed in conjugated sub-basins (oblique to the extension direction) developed in a sequence with and without rheological contrast. In experiments with rheological contrast, two important grabens developed along the faulted margins differing from the subbasins with mechanical stratigraphy. Both experiments developed oblique fault systems and, in the area of sub-basins intersection, faults traces became very curved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Dissertation aimed to advance the geological knowledge of the Barcelona Granitic Pluton (BGP). This body is located in the eastern portion of the Rio Grande do Norte Domain (RND), within the São José do Campestre subdomain (SJC), NE of the Borborema Province. The main goal was to understand the geological evolution of the rocks of the pluton and the tectonic setting of magma generation and its emplacement. The BGP has an assumed Ediacaran age and outcropping area of approximately 260 km2, being composed of three varied petrographic/textural facies: (a) porphyritic biotite monzogranite; (b) dykes and sheets of biotite microgranite; (c) dioritic to quartz-dioritic enclaves. The rocks of the BGP have the following structures: (i) a NE-SW and NW-SE directed magmatic fabric (Sγ), accompanied by a magmatic lineation (Lγ) with gentle dip to NE-SW and NW-SE. In the southern portion, there is the concentric pattern of this foliation with medium to high dip, and (ii) a solid state foliation, in part mylonitic (S3+), mainly on the eastern edge with slightly plunging to west. The integration of structural and gravity data permitted to interpret the emplacement of the BGP as controlled by the transcurrent shear zones systems Lajes Pintadas (LPSZ) and Sítio Novo (SNSZ), both of dextral strike-slip kinematics. Mineral chemistry data show that the amphibole form the porphyritic biotite monzogranite facies is hastingsite with moderate Mg / (Mg + Fe) ratios, indicating crystallization under moderate to high ƒO2 and cristallization pressure of around 5.0-6.0 kbar. The biotite tends to be slightly richer in annite molecule and plots in the transitional field from primary biotite to reequilibrated biotite. In discriminant diagrams of magmatic series, the biotite behave like those of subalkaline affinity, consistent with the potassium calc-alkaline / sub-alkaline geochemical affinity of the hosting rock. The opaque minerals are primarily magnetite, with some crystals martitized to hematite indicating relatively oxidizing conditions during magma evolution that originated the BGP. Zoning in plagioclase, K-feldspar and allanite crystals suggest fractional crystallization process. Lithogeochemical data suggest that the facies described for the BGP have similar magma source, usually plotting in the fields and trends of the subalkaline / high potassium calc-alkaline series.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Bom Jardim de Goiás Pluton (PBJG) is a semi-circular body, located in the central portion of the Tocantins Province, intrusive into orthogneisses and metassupracrustals of the Arenópolis Magmatic Arc. These metasupracrustals present a low to moderate dipping banding or schistosity, have a low to moderate angle of banding / foliation, defined by mica, andalusite and sillimanite and cordierite, which characterize an amphibolite facies metamorphism. This structure is crosscut by the emplacement of the PBJG rocks. The abrupt nature of the contacts and the absence of ductile structures indicate that the intrusion took place in a relatively cold crust. Under petrographic grounds, the pluton consists mainly of monzodiorites, tonalite and granodiorite, following the low to medium-K calk-alkaline alkaline trend. Rocks of the PBJG have hornblende and biotite as the main mafic phases, besides subordinate clinopyroxene, titanite, epidote and opaque. Late dikes of leucogranite contain only mineral biotite as relevant accessory mineral. One U-Pb zircon dating of a monzodiorite yielded an age of 550 ± 12 Ma (MSWD = 1.06). Whole-rock and mineral chemistry suggest that the studied rocks are calc-alkaline, having evolved by fractional crystallization of Ca- and Fe-Mg minerals under high oxygen fugacity. Using the amphibole-plagioclase geothermometer and the Al-in amphibole geobarometer, we calculate temperatures and pressures of, respectively, 692-791 °C e 2.4-5.0 kbar for the intrusion of the PBJG, which is corroborated by previous metamorphic assemblages in the country rocks. The geological, geochemical and geochronological features of PBJG demonstrate their post-tectonic or post-collisional nature, with emplacement into an already uplifted and relatively cool crust at the end of brasiliano orogeny in this portion of the Tocantins Province.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Bom Jardim de Goiás Pluton (PBJG) is a semi-circular body, located in the central portion of the Tocantins Province, intrusive into orthogneisses and metassupracrustals of the Arenópolis Magmatic Arc. These metasupracrustals present a low to moderate dipping banding or schistosity, have a low to moderate angle of banding / foliation, defined by mica, andalusite and sillimanite and cordierite, which characterize an amphibolite facies metamorphism. This structure is crosscut by the emplacement of the PBJG rocks. The abrupt nature of the contacts and the absence of ductile structures indicate that the intrusion took place in a relatively cold crust. Under petrographic grounds, the pluton consists mainly of monzodiorites, tonalite and granodiorite, following the low to medium-K calk-alkaline alkaline trend. Rocks of the PBJG have hornblende and biotite as the main mafic phases, besides subordinate clinopyroxene, titanite, epidote and opaque. Late dikes of leucogranite contain only mineral biotite as relevant accessory mineral. One U-Pb zircon dating of a monzodiorite yielded an age of 550 ± 12 Ma (MSWD = 1.06). Whole-rock and mineral chemistry suggest that the studied rocks are calc-alkaline, having evolved by fractional crystallization of Ca- and Fe-Mg minerals under high oxygen fugacity. Using the amphibole-plagioclase geothermometer and the Al-in amphibole geobarometer, we calculate temperatures and pressures of, respectively, 692-791 °C e 2.4-5.0 kbar for the intrusion of the PBJG, which is corroborated by previous metamorphic assemblages in the country rocks. The geological, geochemical and geochronological features of PBJG demonstrate their post-tectonic or post-collisional nature, with emplacement into an already uplifted and relatively cool crust at the end of brasiliano orogeny in this portion of the Tocantins Province.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Serra do Caramuru and Tapuio stocks, located in the extreme NE of Rio Piranhas-Seridó Domain (RN), are representative of the Ediacaran-Cambrian magmatism, an important magmatic feature of the Brasilian / Panafrican orogeny of the Borborema Province. These bodies are lithologically similar, intrusive in paleoproterozoic gneiss embasement, being separated by a thin belt of mylonitic orthogneiss. The field relations show a magmatic stratigraphy initiated by dioritic facies that coexists with the porphyritic granitic and equigranular granitic I facies, and less frequently with equigranular granitic II facies. These rocks are crosscut by late granitic dykes and sheets with NE-SW / NNE-SSW orientation. The dioritic facies (diorite, quartz diorite, quartz monzodiorites, tonalite and granodiorite) is leucocratic to melanocratic, rich in biotite and hornblende. The granitic facies are hololeucocratic to leucocratic, and have biotite ± hornblende. Petrographic and geochemical (whole rock) data, especially from Serra do Caramuru pluton, suggest fractionation of zircon, apatite, clinopyroxene (in diorites), opaque minerals, titanite, biotite, hornblende, allanite, plagioclase, microcline and garnet (in dykes). The behavior of trace elements such as Zr, La and Yb indicates that the dioritic magma does not constitute the parental magma for the granitic facies. On the other hand, the granitic facies seems to be cogenetic to each other, displaying differentiation trends and very similar rare earth elements (REE) spectra [12.3≤(La/Yb)N≤190.8; Eu/Eu*=0.30-0.68]. Field relationships and REE patterns [6.96≤(La/Yb)N≤277.8; Eu/Eu*=0.18-0.58] demonstrate that the granitic dykes and sheets are not cogenetically related to the Serra do Caramuru magmatism. The dioritic facies is metaluminous (A/CNK = 0.88-0.74) and shoshonitic, whereas the granitic ones are metaluminous to peraluminous (A/CNK = 1.08-0.93) and high potassium calc-alkaline. Dykes and sheets are strictly peraluminous (A/CNK = 1.01-1.04). Binary diagrams relating compatible and incompatible trace elements and microtextures indicate the fractional crystallization as the dominant mechanism of magmatic evolution of the various facies. The Serra do Caramuru and Tapuio stocks have well preserved magmatic fabric, do not show metamorphic minerals and are structurally isotropic, showing crosscutting contact with the ductile fabric of the basement. These observations lead to interpretate a stage of relative tectonic stability, consistent with the orogenic relaxation period of the Brasiliano / Pan-African orogeny. Chemical plots involving oxides and trace elements indicate late to post-collisional emplacement. In this context, the assumed better mechanism to describe the stocks emplacement within an extensional T Riedel joint, with ENE-WSW extensional vector. The U-Pb zircon age of 553 ± 10 Ma allows correlating the Serra do Caramuru magmatism to the group of post-collisional bodies, equigranular high potassium calc-alkaline granites of the NE of Rio Piranhas-Seridó Domain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Serra do Caramuru and Tapuio stocks, located in the extreme NE of Rio Piranhas-Seridó Domain (RN), are representative of the Ediacaran-Cambrian magmatism, an important magmatic feature of the Brasilian / Panafrican orogeny of the Borborema Province. These bodies are lithologically similar, intrusive in paleoproterozoic gneiss embasement, being separated by a thin belt of mylonitic orthogneiss. The field relations show a magmatic stratigraphy initiated by dioritic facies that coexists with the porphyritic granitic and equigranular granitic I facies, and less frequently with equigranular granitic II facies. These rocks are crosscut by late granitic dykes and sheets with NE-SW / NNE-SSW orientation. The dioritic facies (diorite, quartz diorite, quartz monzodiorites, tonalite and granodiorite) is leucocratic to melanocratic, rich in biotite and hornblende. The granitic facies are hololeucocratic to leucocratic, and have biotite ± hornblende. Petrographic and geochemical (whole rock) data, especially from Serra do Caramuru pluton, suggest fractionation of zircon, apatite, clinopyroxene (in diorites), opaque minerals, titanite, biotite, hornblende, allanite, plagioclase, microcline and garnet (in dykes). The behavior of trace elements such as Zr, La and Yb indicates that the dioritic magma does not constitute the parental magma for the granitic facies. On the other hand, the granitic facies seems to be cogenetic to each other, displaying differentiation trends and very similar rare earth elements (REE) spectra [12.3≤(La/Yb)N≤190.8; Eu/Eu*=0.30-0.68]. Field relationships and REE patterns [6.96≤(La/Yb)N≤277.8; Eu/Eu*=0.18-0.58] demonstrate that the granitic dykes and sheets are not cogenetically related to the Serra do Caramuru magmatism. The dioritic facies is metaluminous (A/CNK = 0.88-0.74) and shoshonitic, whereas the granitic ones are metaluminous to peraluminous (A/CNK = 1.08-0.93) and high potassium calc-alkaline. Dykes and sheets are strictly peraluminous (A/CNK = 1.01-1.04). Binary diagrams relating compatible and incompatible trace elements and microtextures indicate the fractional crystallization as the dominant mechanism of magmatic evolution of the various facies. The Serra do Caramuru and Tapuio stocks have well preserved magmatic fabric, do not show metamorphic minerals and are structurally isotropic, showing crosscutting contact with the ductile fabric of the basement. These observations lead to interpretate a stage of relative tectonic stability, consistent with the orogenic relaxation period of the Brasiliano / Pan-African orogeny. Chemical plots involving oxides and trace elements indicate late to post-collisional emplacement. In this context, the assumed better mechanism to describe the stocks emplacement within an extensional T Riedel joint, with ENE-WSW extensional vector. The U-Pb zircon age of 553 ± 10 Ma allows correlating the Serra do Caramuru magmatism to the group of post-collisional bodies, equigranular high potassium calc-alkaline granites of the NE of Rio Piranhas-Seridó Domain.