2 resultados para Electrical engineering|Artificial intelligence
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Artificial Intelligence techniques are applied to improve performance of a simulated oil distillation system. The chosen system was a debutanizer column. At this process, the feed, which comes to the column, is segmented by heating. The lightest components become steams, by forming the LPG (Liquefied Petroleum Gas). The others components, C5+, continue liquid. In the composition of the LPG, ideally, we have only propane and butanes, but, in practice, there are contaminants, for example, pentanes. The objective of this work is to control pentane amount in LPG, by means of intelligent set points (SP s) determination for PID controllers that are present in original instrumentation (regulatory control) of the column. A fuzzy system will be responsible for adjusting the SP's, driven by the comparison between the molar fraction of the pentane present in the output of the plant (LPG) and the desired amount. However, the molar fraction of pentane is difficult to measure on-line, due to constraints such as: long intervals of measurement, high reliability and low cost. Therefore, an inference system was used, based on a multilayer neural network, to infer the pentane molar fraction through secondary variables of the column. Finally, the results shown that the proposed control system were able to control the value of pentane molar fraction under different operational situations
Resumo:
Intendding to understand how the human mind operates, some philosophers and psycologists began to study about rationality. Theories were built from those studies and nowadays that interest have been extended to many other areas such as computing engineering and computing science, but with a minimal distinction at its goal: to understand the mind operational proccess and apply it on agents modelling to become possible the implementation (of softwares or hardwares) with the agent-oriented paradigm where agents are able to deliberate their own plans of actions. In computing science, the sub-area of multiagents systems has progressed using several works concerning artificial intelligence, computational logic, distributed systems, games theory and even philosophy and psycology. This present work hopes to show how it can be get a logical formalisation extention of a rational agents architecture model called BDI (based in a philosophic Bratman s Theory) in which agents are capable to deliberate actions from its beliefs, desires and intentions. The formalisation of this model is called BDI logic and it is a modal logic (in general it is a branching time logic) with three access relations: B, D and I. And here, it will show two possible extentions that tranform BDI logic in a modal-fuzzy logic where the formulae and the access relations can be evaluated by values from the interval [0,1]