4 resultados para Electric network parameters

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

80.00% 80.00%

Publicador:

Resumo:

With the growing demand of data traffic in the networks of third generation (3G), the mobile operators have attempted to focus resources on infrastructure in places where it identifies a greater need. The channeling investments aim to maintain the quality of service especially in dense urban areas. WCDMA - HSPA parameters Rx Power, RSCP (Received Signal Code Power), Ec/Io (Energy per chip/Interference) and transmission rate (throughput) at the physical layer are analyzed. In this work the prediction of time series on HSPA network is performed. The collection of values of the parameters was performed on a fully operational network through a drive test in Natal - RN, a capital city of Brazil northeastern. The models used for prediction of time series were the Simple Exponential Smoothing, Holt, Holt Winters Additive and Holt Winters Multiplicative. The objective of the predictions of the series is to check which model will generate the best predictions of network parameters WCDMA - HSPA.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Wireless sensor networks (WSN) have gained ground in the industrial environment, due to the possibility of connecting points of information that were inaccessible to wired networks. However, there are several challenges in the implementation and acceptance of this technology in the industrial environment, one of them the guaranteed availability of information, which can be influenced by various parameters, such as path stability and power consumption of the field device. As such, in this work was developed a tool to evaluate and infer parameters of wireless industrial networks based on the WirelessHART and ISA 100.11a protocols. The tool allows quantitative evaluation, qualitative evaluation and evaluation by inference during a given time of the operating network. The quantitative and qualitative evaluation are based on own definitions of parameters, such as the parameter of stability, or based on descriptive statistics, such as mean, standard deviation and box plots. In the evaluation by inference uses the intelligent technique artificial neural networks to infer some network parameters such as battery life. Finally, it displays the results of use the tool in different scenarios networks, as topologies star and mesh, in order to attest to the importance of tool in evaluation of the behavior of these networks, but also support possible changes or maintenance of the system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In last decades, neural networks have been established as a major tool for the identification of nonlinear systems. Among the various types of networks used in identification, one that can be highlighted is the wavelet neural network (WNN). This network combines the characteristics of wavelet multiresolution theory with learning ability and generalization of neural networks usually, providing more accurate models than those ones obtained by traditional networks. An extension of WNN networks is to combine the neuro-fuzzy ANFIS (Adaptive Network Based Fuzzy Inference System) structure with wavelets, leading to generate the Fuzzy Wavelet Neural Network - FWNN structure. This network is very similar to ANFIS networks, with the difference that traditional polynomials present in consequent of this network are replaced by WNN networks. This paper proposes the identification of nonlinear dynamical systems from a network FWNN modified. In the proposed structure, functions only wavelets are used in the consequent. Thus, it is possible to obtain a simplification of the structure, reducing the number of adjustable parameters of the network. To evaluate the performance of network FWNN with this modification, an analysis of network performance is made, verifying advantages, disadvantages and cost effectiveness when compared to other existing FWNN structures in literature. The evaluations are carried out via the identification of two simulated systems traditionally found in the literature and a real nonlinear system, consisting of a nonlinear multi section tank. Finally, the network is used to infer values of temperature and humidity inside of a neonatal incubator. The execution of such analyzes is based on various criteria, like: mean squared error, number of training epochs, number of adjustable parameters, the variation of the mean square error, among others. The results found show the generalization ability of the modified structure, despite the simplification performed

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work shows that the synthesis by combustion is a prominent alternative to obtain ceramic powders of higher oxides, nanostructured and of high purity, as the ferrites of formulas Co(1-x)Zn(x)Fe2O4 e Ni(1-x)Zn(x)Fe2O4 with x ranging from 0.2 mols, in a range from 0.2 ≤ x ≥ 1.0 mol, that presents magnetic properties in coexistence of ferroelectric and ferrimagnetic states, which can be used in antennas of micro tapes and selective surfaces of low frequency in a range of miniaturized microwaves, without performance loss. The obtainment occurred through the combustion process, followed by appropriate physical processes and ordered to the utilization of the substrate sinterization process, it gave us a ceramic material, of high purity degree in a nanometric scale. The Vibrating Sample Magnetometer (VSM) analysis showed that those ferritic materials presents parameters, as materials hysteresis, that have own behavior of magnetic materials of good quality, in which the magnetization states can be suddenly changed with a relatively small variation of the field intensity, having large applications on the electronics field. The X-ray Diffraction (XRD) analysis of the ceramic powders synthesized at 900 °C, characterize its structural and geometrical properties, the crystallite size and the interplanar spacing. Other analysis were developed, as Scanning Electron Microscopy (SEM), X-ray Fluorescence (XRF), electric permittivity and the tangent loss, in high frequencies, through the equipment ZVB - 14 Vector Network Analyzer 10 MHz-14 GHz, of ROHDE & SCHWART.