5 resultados para Electric heating.
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Dutra, R. P. S.; Varela,M. L.; Nascimento, R. M. ; Gomes, U. U. ; Martinelli1, A. E. ; Paskocimas, C. A. Estudo comparativo da queima rápida com a queima tradicional nas propriedades de materiais cerâmicos de base argilosa. Cerâmica [online]. 2009, vol.55, n.333, pp. 100-105. ISSN 0366-6913. doi:Disponivem em:
Resumo:
The red pottery industry in Piauí state is well developed and stands out at the national context for the technical quality of its products. The floor and wall tile industry, however, is little developed since the state has only one company that produces red clay-based ceramic tiles. This thesis aims at using the predominantly illitic basic mass of the above mentioned industry, with the addition of feldspar and/or kaolin residue in order to obtain products of higher technical quality. Kaolin residue consists basically of kaolinite, muscovite mica and quartz; the feldspar used was potassic. In this experiment, basic mass (MB) was used for experimental control and fifteen formulations codified as follows: F2, F4, F8, F16, F32, FR2, FR4, FR8, FR16, FR32, R2, R4, R8, R16 and R32. All raw materials were dry-milled, classified, formulated and then humidified to 10% water. Thereafter, test samples were produced by unixial pressing process in a rectangular steel matrix (60.0 x 20.0 x 5.0) mm3 at (25 MPa). They were fired at four temperatures: 1080°C, 1120°C, 1160°C, with a heating rate of 10°C/min during up to 10 min in an electric oven, and the last one in an industrial oven with a peak of 1140°C, aim ing to confirm the results found in laboratory and, finally, technological tests were performed: MEA, RL, AA, PA, TRF and PF. The results revealed that the residue under study can be considered a raw material with large potential in the industry of red clay-based ceramic tiles, since the results found both in laboratory and in the industry have shown that the test samples produced from the formulations with up to 4% feldspar and those produced with up to 8% feldspar and residue permitted a reduction in the water absorption rate and an increase in the mechanical resistance while those samples produced with up to 4% residue had an increase in the mechanical resistance when compared to those produced from the basic mass and that the formulation with 2% feldspar and residue presented the best technological properties, lowering the sintering temperature down to 1120°C
Resumo:
The thermoelectric energy conversion can be performed directly on generators without moving parts, using the principle of SEEBECK effect, obtained in junctions of drivers' thermocouples and most recently in semiconductor junctions type p-n which have increased efficiency of conversion. When termogenerators are exposed to the temperature difference (thermal gradient) eletromotriz a force is generated inducing the appearance of an electric current in the circuit. Thus, it is possible to convert the heat of combustion of a gas through a burner in power, being a thermoelectric generator. The development of infrared burners, using porous ceramic plate, is possible to improve the efficiency of heating, and reduce harmful emissions such as CO, CO2, NOx, etc.. In recent years the meliorate of thermoelectric modules semiconductor (TEG's) has stimulated the development of devices generating and recovery of thermal irreversibility of thermal machines and processes, improving energy efficiency and exergy these systems, especially processes that enable the cogeneration of energy. This work is based on the construction and evaluation of a prototype in a pilot scale, for energy generation to specific applications. The unit uses a fuel gas (LPG) as a primary energy source. The prototype consists of a porous plate burner infrared, an adapter to the module generator, a set of semiconductor modules purchased from Hi-Z Inc. and a heat exchanger to be used as cold source. The prototype was mounted on a test bench, using a system of acquisition of temperature, a system of application of load and instrumentation to assess its functioning and performance. The prototype had an efficiency of chemical conversion of 0.31% for electrical and heat recovery for cogeneration of about 33.2%, resulting in an overall efficiency of 33.51%. The efficiency of energy exergy next shows that the use of primary energy to useful fuel was satisfactory, although the proposed mechanism has also has a low performance due to underuse of the area heated by the small number of modules, as well as a thermal gradient below the ideal informed by the manufacturer, and other factors. The test methodology adopted proved to be suitable for evaluating the prototype
Resumo:
This work proposes a model to investigate the use of a cylindrical antenna used in the thermal method of recovering through electromagnetic radiation of high-viscosity oil. The antenna has a simple geometry, adapted dipole type, and it can be modelled by using Maxwell s equation. The wavelet transforms are used as basis functions and applied in conjunction with the method of moments to obtain the current distribution in the antenna. The electric field, power and temperature distribution are carefully calculated for the analysis of the antenna as electromagnetic heating. The energy performance is analyzed based on thermo-fluid dynamic simulations at field scale, and through the adaptation in the Steam Thermal and Advanced Processes Reservoir Simulator (STARS) by Computer Modelling Group (CMG). The model proposed and the numerical results obtained are stable and presented good agreement with the results reported in the specialized literature
Resumo:
The technique of ion nitriding, despite being fully consolidated in the industry, has great limitations when applied to the treatment of small parts. This is because effects that occur due to non-uniformity of the electric field, generate localized heating in parts, damaging the uniformity of nitrided layer. In addition, because the samples are treated static parts thereof are untreated. To expand the use of plasma nitriding, this work presents the development, assembly and testing of a prototype plasma reactor with rotatory cathodic cage [patent pending], able to meet these needs, giving the material a uniform treatment and opening doors to industrial scale production. The samples tested with hexagonal nuts are 6.0 mm in diameter, made of stainless steel AISI 304 nitrided at a pressure of 1 mbar in an atmosphere of 20% H2 + 80% N2 for 1 h. After treatment, testing visual inspection, optical microscopy and microhardness were carried out to check the effectiveness of the process for uniformity and hardness of the parts. All samples exhibited uniform color, and matte brownish, unlike the untreated samples, silver color and gloss. The hardness of the surface (top and sides) was 65% and even higher than the original hardness. The nitrided layer showed great uniformity in microstructure and thickness. It is concluded, therefore, that the unit was effective constructed for the purposes for which it was designed