3 resultados para Efeito da acidez dos solos
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
This study aimed to analyze the effect of a saline solution on growth and chemical composition of Atriplex nummularia, shrubby plant, absorbing salts used in the diet of animals and the management of water and saline soils. These plant seedlings were planted and grown in a reserved area at the Federal University of Rio Grande do Norte. The plantation was divided into two blocks, in which one of them was irrigated with saline solution with a concentration of 2840 mgL-1 of NaCl and the second group was irrigated with drinking water. After six months, the plants were collected, harvested and divided into three parts: leaf, thin and thick stem. Monthly, dimension measurements were carried out for cataloging the growth of Atriplex. Ion Chromatography (IC) and Optical Emission Spectroscopy Inductively Coupled Plasma (ICP-OES) were used to analyze the chemical composition of the partition plant parts. The results of these analyses revealed that an absorption process of anions and cations by Atriplex nummularia plant during its growth was achieved, in particular by a higher concentration of sodium and chloride ions. Scanning electron microscopy images showed and confirmed the presence of small crystals on the leaf surface. Electrical conductivity and pH measurements of the aerial parts of the plant were carried out and these results showed that the leaf is the plant part where there is a largest concentration of ions. In addition, measurements of specific surface were obtained from irrigated plants with saline solution, achieving higher surface area, in all cases. Plant dimensions obtained monthly showed that the plants irrigated with water grew 5% more than those plants irrigated with saline solution. Based on results obtained, Atriplex plant showed a higher potential to survive and adapt to environments (aquatic or geological) with high levels of salinity and this property can be used as a tool for removing salts/metals from industrial contaminated soils and effluents.
Resumo:
Environmental liabilities from accidents in the retail petroleum industry, especially in urban areas, have represented a serious problem whose impact reaches the underground, people's health and even economic losses with the remediation process. In U.S.A. are estimated hundreds of billions of dollars invested in soil remediation processes. The results of the reports and investigative reports of liabilities in fuel stations distributed in the urban area of Natal-RN were used to estimate the local scenario of contamination. This database has been possible to determine the main contaminants (BTEX, PAHs, TOC), affected neighborhoods and types of potentially more impacted soils. Experiments were carried out in order to reverse contamination of this scenario, where the soil type was a factor in the planning, because it influences directly on the effectiveness of remediation techniques studied: Oxidation by hydrogen peroxide and oxidation by sodium persulphate. These oxidants are activated forming free radicals (HO•-, SO4 •-, HO2 • , O2 •-, S2O8 -2, etc) responsible for to mineralize the hydrocarbons and other organic compounds (releasing O2 e CO2). In the activation process, the ferrous ions (II) and ferric (III) were studied as well as hydrogen peroxide activation technique with sodium persulfate, the latter being presented the best efficiency among all the study, when activated with Fe+3. In addition to defining the most efficient technique, the aim of this study was to evaluate the influence of different soils among oxidative techniques, characterizing the effect of the concentration of these oxidants and also the concentration of the catalysts. Exists in most scenarios evaluated the presence of intrinsic total iron soil matrix. The so-called latosols present microaggregates reddish indicating the presence of these reactive species like iron and clayey aspect. The kinetic study was conducted by experimental design and monitoring of the percentage of total carbon (SSM-5000A) in the solid and liquid phases, knowing that 82.4% of the diesel molecule is carbon. Yet organic carbon and pH of liquid samples were analyzed for technical, characterizing the influence of soil type and its operating condition. The Fenton-like technique H2O2 e Fe+2 presented satisfactory oxidation, including sandy soil, but well below the best result. The sodium persulphate only activated with temperature, even in the most favorable soil, did not provide good efficiency. The best technique in the study had the concentration profile with 2,2x10- 1mol.L-1 of Na2S2O8 activated with 6,53x10-1mol.L-1 of H2O2 and 2,5x10-2 Fe3+mol.L-1 which reduced in less than a day 96 contamination in red soil, initially with 66,667 mg of diesel per kg of clean soil
Resumo:
Camu-camu (Myrciaria dubia H.B.K. (McVaugh)) is a native Amazon fruit, recognized worldwide as one of the main natural sources of ascorbic acid. Due to its great acidity, this fruit is generally consumed after processing into juice or as ingredient in food preparations. As a co-product of the camu-camu processing, a significant amount of agroindustrial residue is generated. Despite the studies showing the bioactive value and biological potential of the fruit, few studies have approached the possible processing techniques, transformation and preservation of camu-camu fruits and its agroindustrial pomace. Therefore, the present work has the objective of evaluating two different drying processes applied to camu-camu pomace (peel and seeds with residual pulp), freeze drying and hot air drying, in order to obtain a functional fruit product. This thesis was divided into three stages: the first one shows the studies related to the freeze drying and hot air drying, where we demonstrated the impact of the selected drying techniques on the bioactive components of camu-camu, taking the fresh pomace as the control group. Among the investigated conditions, the groups obtained at 50ºC and 4 m/s (SC50) and 80ºC and 6 m/s (SC80) were selected as for further studies, based on their ascorbic acid final content and Folin-Ciocalteau reducing capacity. In addition to SC50 and SC80, the fresh pomace (RF) and freeze dried (RL) samples were also evaluated in these further stages of the research. Overall, the results show higher bioactive concentration in the RF samples, followed by RL, SC50 and SC80. On the second step of the research, the antioxidant, antimicrobial and antienzymatic activities were evaluated and the same tendency was observed. It was also reported, for the first time in the literature, the presence of syringic acid in dried camu-camu pomace. In the third and final stage of the research, it was investigated the effect of dried camu-camu on aging and neuroprotective disorders, using the in vivo model C.elegans. It was observed that camu-camu extracts were able to modulate important signaling genes relevant to thermal and oxidative stresses (p < 0.05). The polar acid, polar basic and polar neutral fractions obtained from the low molecular extracts of SC50 were able to extend the lifespan of wild type N2 C. elegans in 20% and 13% (p < 0.001). Results also showed that the paralysis induced by the β1-42 amyloid was significantly (p < 0.0001) retarded in CL4176 worms. Similarly, the camu-camu extracts attenuated the dopaminergic induction associated to Parkinson’s disease. Finally, a global analysis of the data presented here reveal that the camu-camu pomace, a co-product obtained from the industrial processing of a native Brazilian fruit, is a relevant natural source of health relevant compounds. This thesis, shows for the first time, the multifunctionality of camu-camu pomace, a natural resource still underexploited for scientific, commercial and technological purposes.