9 resultados para Edge effect

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The pulsed plasma nitriding is a solution currently used in the metallurgical industry to resolve problems earlier in the processing of parts by using plasma DC voltage. These problems consisted mainly of edge effect and opening arches caused due to non-uniformity of electric fields on uneven surfaces. By varying the pulse width can reduce these effects. However, variations in pulse width can drastically affect the population of the plasma species and hence the final microstructure of the nitrided layer. In literature, little is known about the effect of process parameters on the properties of the plasma species and, consequently, the surface properties. We have developed a system of nitriding with pulsed source with fixed period of 800  pulse width is variable. Examined the variation of these parameters on the properties of nitrided surface when keeping constant temperature, gas composition, flow, pressure and power. It was found that the values of width and pulse repetition time of considerable influence in the intensities of the species present in plasma. Moreover, we observed the existence of the edge effect for some values of pulse widths, as well as changes in surface roughness and hardness

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ionic plasma nitriding is one of the most important plasma assisted treatment technique for surface modification, but it presents some inherent problems mainly in nitriding pieces with complex geometries. In the last four years has appeared a plasma nitriding technique, named ASPN (Active Screen Plasma Nitriding) in which the samples and the workload are surrounded by a metal screen on which the cathodic potential is applied. This new technique makes possible to obtain a perfect uniform nitrided layer apart from the shape of the samples. The present work is based on the development of a new nitriding plasma technique named CCPN (Cathodic Cage Plasma Nitriding) Patent PI 0603213-3 derived from ASPN, but utilizes the hollow cathode effect to increase the nitriding process efficiency. That technique has shown great improvement on the treatment of several types of steels under different process conditions, producing thicker and harder layers when compared with both, ASPN and ionic plasma nitriding, besides eliminating problems associated with the later technique. The best obtained results are due to the hollow cathode effect on the cage holes. Moreover, characteristic problems of ionic plasma nitriding are eliminated due to the fact that the luminescent discharge acts on the cage wall instead of on the samples surface, which remains under a floating potential. In this work the enhancement of the cathodic cage nitriding layers proprieties, under several conditions for some types of steels was investigated, besides the mechanism for nitrides deposition on glass substrate, concluding that the CCPN is both a diffusion and a deposition process at the same time

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ionic nitriding process presents some limitations related with the control of the thickness of the layer and its uniformity. Those limitations that happen during the process, are produced due to edge effects, damage caused by arcing arc and hollow cathode, mainly in pieces with complex geometry and under pressures in excess of 1 mbar. A new technique, denominated ASPN (active screen shapes nitriding) it has been used as alternative, for offering many advantages with respect to dc plasma conventional. The developed system presents a configuration in that the samples treated are surrounded by a large metal screen at high voltage cathodic potencials, (varying between 0 and 1200V) and currents up to 1 A. The sample is placed in floting potential or polarized at relatively lower bias voltages by an auxiliary source. As the plasma is not formed directly in the sample surface but in the metal screen, the mentioned effects are eliminated. This mechanism allows investigate ion of the transfer of nitrogen to the substrate. Optical and electronic microscopy are used to exam morphology and structure at the layer. X-ray difration for phase identification and microhardness to evaluate the efficiency of this process with respect to dc conventional nitriding

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the present work we use a plasma jet system with a hollow cathode to deposit thin TiO2 films on silicon substrates as alternative at sol-gel, PECVD, dip-coating e magnetron sputtering techniques. The cylindrical cathode, made from pure titanium, can be negatively polarized between 0 e 1200 V and supports an electrical current of up to 1 A. An Ar/O2 mixture, with a total flux of 20 sccm and an O2 percentage ranging between 0 and 30%, is passed through a cylindrical hole machined in the cathode. The plasma parameters and your influence on the properties of deposited TiO2 films and their deposition rate was studied. When discharge occurs, titanium atoms are sputtered/evaporated. They are transported by the jet and deposited on the Si substrates located on the substrate holder facing the plasma jet system at a distance ranging between10 and 50 mm from the cathode. The working pressure was 10-3 mbar and the deposition time was 10 -60 min. Deposited films were characterized by scanning electron microscopy and atomic force microscopy to check the film uniformity and morphology and by X-ray diffraction to analyze qualitatively the phases present. Also it is presented the new dispositive denominate ionizing cage, derived from the active screen plasma nitriding (ASPN), but based in hollow cathode effect, recently developed. In this process, the sample was involved in a cage, in which the cathodic potential was applied. The samples were placed on an insulator substrate holder, remaining in a floating potential, and then it was treated in reactive plasma in hollow cathode regime. Moreover, the edge effect was completely eliminated, since the plasma was formed on the cage and not directly onto the samples and uniformity layer was getting in all sampl

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Borborema Province (BP) is a geologic domain located in Northeastern Brazil. The BP is limited at the south by the São Francisco craton, at the west by the Parnaíba basin, and both at the north and east by coastal sedimentary basins. Nonetheless the BP surface geology is well known, several key aspects of its evolution are still open, notably: i)its tectonic compartmentalization established after the Brasiliano orogenesis, ii) the architecture of its cretaceous continental margin, iii) the elastic properties of its lithosphere, and iv) the causes of magmatism and uplifting which occurred in the Cenozoic. In this thesis, a regional coverage of geophysical data (elevation, gravity, magnetic, geoid height, and surface wave global tomography) were integrated with surface geologic information aiming to attain a better understanding of the above questions. In the Riacho do Pontal belt and in the western sector of the Sergipano belt, the neoproterozoic suture of the collision of the Sul domain of the BP with the Sanfranciscana plate (SFP) is correlated with an expressive dipolar gravity anomaly. The positive lobule of this anomaly is due to the BP lower continental crust uplifting whilst the negative lobule is due to the supracrustal nappes overthrusting the SFP. In the eastern sector of the Sergipano belt, this dipolar gravity anomaly does not exist. However the suture still can be identified at the southern sector of the Marancó complex arc, alongside of the Porto da Folha shear zone, where the SFP N-S geophysical alignments are truncated. The boundary associated to the collision of the Ceará domain of the BP with the West African craton is also correlated with a dipolar gravity anomaly. The positive lobule of this anomaly coincides with the Sobral-Pedro II shear zone whilst the negative lobule is associated with the Santa Quitéria magmatic arc. Judging by their geophysical signatures, the major BP internal boundaries are: i)the western sector of the Pernambuco shear zone and the eastern continuation of this shear zone as the Congo shear zone, ii) the Patos shear zone, and iii) the Jaguaribe shear zone and its southwestern continuation as the Tatajuba shear zone. These boundaries divide the BP in five tectonic domains in the geophysical criteria: Sul, Transversal, Rio Grande do Norte, Ceará, and Médio Coreaú. The Sul domain is characterized by geophysical signatures associated with the BP and SFP collision. The fact that Congo shear zone is now proposed as part of the Transversal domain boundary implies an important change in the original definition of this domain. The Rio Grande do Norte domain presents a highly magnetized crust resulted from the superposition of precambrian and phanerozoic events. The Ceará domain is divided by the Senador Pompeu shear zone in two subdomains: the eastern one corresponds to the Orós-Jaguaribe belt and the western one to the Ceará-Central subdomain. The latter subdomain exhibits a positive ENE-W SW gravity anomaly which was associated to a crustal discontinuity. This discontinuity would have acted as a rampart against to the N-S Brasiliano orogenic nappes. The Médio Coreaú domain also presents a dipolar gravity anomaly. Its positive lobule is due to granulitic rocks whereas the negative one is caused by supracrustal rocks. The boundary between Médio Coreaú and Ceará domains can be traced below the Parnaíba basin sediments by its geophysical signature. The joint analysis of free air anomalies, free air admittances, and effective elastic thickness estimates (Te) revealed that the Brazilian East and Equatorial continental margins have quite different elastic properties. In the first one 10 km < Te < 20 km whereas in the second one Te ≤ 10 km. The weakness of the Equatorial margin lithosphere was caused by the cenozoic magmatism. The BP continental margin presents segmentations; some of them have inheritance from precambrian structures and domains. The segmentations conform markedly with some sedimentary basin features which are below described from south to north. The limit between Sergipe and Alagoas subbasins coincides with the suture between BP and SFP. Te estimates indicates concordantly that in Sergipe subbasin Te is around 20 km while Alagoas subbasin has Te around 10 km, thus revealing that the lithosphere in the Sergipe subbasin has a greater rigidity than the lithosphere in the Alagoas subbasin. Additionally inside the crust beneath Sergipe subbasin occurs a very dense body (underplating or crustal heritage?) which is not present in the crust beneath Alagoas subbasin. The continental margin of the Pernambuco basin (15 < Te < 25 km) presents a very distinct free air edge effect displaying two anomalies. This fact indicates the existence in the Pernambuco plateau of a relatively thick crust. In the Paraíba basin the free air edge effect is quite uniform, Te ≈ 15 km, and the lower crust is abnormally dense probably due to its alteration by a magmatic underplating in the Cenozoic. The Potiguar basin segmentation in three parts was corroborated by the Te estimates: in the Potiguar rift Te ≅ 5 km, in the Aracati platform Te ≅ 25 km, and in the Touros platform Te ≅ 10 km. The observed weakness of the lithosphere in the Potiguar rift segment is due to the high heat flux while the relatively high strength of the lithosphere in the Touros platform may be due to the existence of an archaean crust. The Ceará basin, in the region of Mundaú and Icaraí subbasins, presents a quite uniform free air edge effect and Te ranges from 10 to 15 km. The analysis of the Bouguer admittance revealed that isostasy in BP can be explained with an isostatic model where combined surface and buried loadings are present. The estimated ratio of the buried loading relative to the surface loading is equal to 15. In addition, the lower crust in BP is abnormally dense. These affirmations are particularly adequate to the northern portion of BP where adherence of the observed data to the isostatic model is quite good. Using the same above described isostatic model to calculate the coherence function, it was obtained that a single Te estimate for the entire BP must be lower than 60 km; in addition, the BP north portion has Te around 20 km. Using the conventional elastic flexural model to isostasy, an inversion of crust thickness was performed. It was identified two regions in BP where the crust is thickened: one below the Borborema plateau (associated to an uplifting in the Cenozoic) and the other one in the Ceará domain beneath the Santa Quitéria magmatic arc (a residue associated to the Brasiliano orogenesis). On the other hand, along the Cariri-Potiguar trend, the crust is thinned due to an aborted rifting in the Cretaceous. Based on the interpretation of free air anomalies, it was inferred the existence of a large magmatism in the oceanic crust surrounding the BP, in contrast with the incipient magmatism in the continent as shown by surface geology. In BP a quite important positive geoid anomaly exists. This anomaly is spatially correlated with the Borborema plateau and the Macaú-Queimadas volcanic lineament. The integrated interpretation of geoid height anomaly data, global shear velocity model, and geologic data allow to propose that and Edge Driven Convection (EDC) may have caused the Cenozoic magmatism. The EDC is an instability that presumably occurs at the boundary between thick stable lithosphere and oceanic thin lithosphere. In the BP lithosphere, the EDC mechanism would have dragged the cold lithospheric mantle into the hot asthenospheric mantle thus causing a positive density contrast that would have generated the main component of the geoid height anomaly. In addition, the compatibility of the gravity data with the isostatic model, where combined surface and buried loadings are present, together with the temporal correlation between the Cenozoic magmatism and the Borborema plateau uplifting allow to propose that this uplifting would have been caused by the buoyancy effect of a crustal root generated by a magmatic underplating in the Cenozoic

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The plasma nitriding has been used in industrial and technological applications for large-scale show an improvement in the mechanical, tribological, among others. In order to solve problems arising in the conventional nitriding, for example, rings constraint (edge effect) techniques have been developed with different cathodes. In this work, we studied surfaces of commercially pure titanium (Grade II), modified by plasma nitriding treatment through different settings cathodes (hollow cathode, cathodic cage with a cage and cathodic cage with two cages) varying the temperature 350, 400 and 430oC, with the goal of obtaining a surface optimization for technological applications, evaluating which treatment generally showed better results under the substrate. The samples were characterized by the techniques of testing for Atomic Force Microscopy (AFM), Raman spectroscopy, microhardness, X-ray diffraction (XRD), and a macroscopic analysis. Thus, we were able to evaluate the processing properties, such as roughness, topography, the presence of interstitial elements, hardness, homogeneity, uniformity and thickness of the nitrided layer. It was observed that all samples were exposed to nitriding modified relative to the control sample (no treatment) thus having increased surface hardness, the presence of TiN observed by XRD as per both Raman and a significant change in the roughness of the treated samples . It was found that treatment in hollow cathode, despite having the lowest value of microhardness between treated samples, was presented the lowest surface roughness, although this configuration samples suffer greater physical aggressiveness of treatment

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The pulsed plasma nitriding is a solution currently used in the metallurgical industry to resolve problems earlier in the processing of parts by using plasma DC voltage. These problems consisted mainly of edge effect and opening arches caused due to non-uniformity of electric fields on uneven surfaces. By varying the pulse width can reduce these effects. However, variations in pulse width can drastically affect the population of the plasma species and hence the final microstructure of the nitrided layer. In literature, little is known about the effect of process parameters on the properties of the plasma species and, consequently, the surface properties. We have developed a system of nitriding with pulsed source with fixed period of 800  pulse width is variable. Examined the variation of these parameters on the properties of nitrided surface when keeping constant temperature, gas composition, flow, pressure and power. It was found that the values of width and pulse repetition time of considerable influence in the intensities of the species present in plasma. Moreover, we observed the existence of the edge effect for some values of pulse widths, as well as changes in surface roughness and hardness

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ionic plasma nitriding is one of the most important plasma assisted treatment technique for surface modification, but it presents some inherent problems mainly in nitriding pieces with complex geometries. In the last four years has appeared a plasma nitriding technique, named ASPN (Active Screen Plasma Nitriding) in which the samples and the workload are surrounded by a metal screen on which the cathodic potential is applied. This new technique makes possible to obtain a perfect uniform nitrided layer apart from the shape of the samples. The present work is based on the development of a new nitriding plasma technique named CCPN (Cathodic Cage Plasma Nitriding) Patent PI 0603213-3 derived from ASPN, but utilizes the hollow cathode effect to increase the nitriding process efficiency. That technique has shown great improvement on the treatment of several types of steels under different process conditions, producing thicker and harder layers when compared with both, ASPN and ionic plasma nitriding, besides eliminating problems associated with the later technique. The best obtained results are due to the hollow cathode effect on the cage holes. Moreover, characteristic problems of ionic plasma nitriding are eliminated due to the fact that the luminescent discharge acts on the cage wall instead of on the samples surface, which remains under a floating potential. In this work the enhancement of the cathodic cage nitriding layers proprieties, under several conditions for some types of steels was investigated, besides the mechanism for nitrides deposition on glass substrate, concluding that the CCPN is both a diffusion and a deposition process at the same time

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ionic nitriding process presents some limitations related with the control of the thickness of the layer and its uniformity. Those limitations that happen during the process, are produced due to edge effects, damage caused by arcing arc and hollow cathode, mainly in pieces with complex geometry and under pressures in excess of 1 mbar. A new technique, denominated ASPN (active screen shapes nitriding) it has been used as alternative, for offering many advantages with respect to dc plasma conventional. The developed system presents a configuration in that the samples treated are surrounded by a large metal screen at high voltage cathodic potencials, (varying between 0 and 1200V) and currents up to 1 A. The sample is placed in floting potential or polarized at relatively lower bias voltages by an auxiliary source. As the plasma is not formed directly in the sample surface but in the metal screen, the mentioned effects are eliminated. This mechanism allows investigate ion of the transfer of nitrogen to the substrate. Optical and electronic microscopy are used to exam morphology and structure at the layer. X-ray difration for phase identification and microhardness to evaluate the efficiency of this process with respect to dc conventional nitriding