5 resultados para Ecological niche
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Based on climate data and occurrence records, ecological niche models (ENM) are an important opportunity to identify areas at risk or vulnerable to biological invasion. These models are based on the assumption that there is a match between the climatic characteristic of native and invaded regions predicting the potential distribution of exotic species. Using new methods to measure niche overlap, we chose two exotic species fairly common in semi-arid regions of South America, Prosopis juliflora (Sw.) D.C. and Prosopis pallida (H. ; B. ex. Willd) HBK, to test the climate matching hypothesis. Our results indicate that both species occur with little niche overlap in the native region while the inverse pattern is observed in the invaded region on South America, where both species occur with high climatic overlap. Maybe some non-climate factor act limiting the spread of P. pallida on the native range. We believe that a founder effect can explain these similarities between species niche in the invaded region once the seeds planted in Brazil came from a small region on the Native range (Piura in Peru), where both species occur sympatric. Our hypothesis of a founder effect may be evident when we look at the differences between the predictions of the models built in the native and invaded ranges. Furthermore, our results indicate that P. juliflora shows high levels of climate matching between native and invaded ranges. However, conclusions about climate matching of P. pallida should be taken with caution. Our models based on climatic variables provide multiple locations suitable for occurrence of both species in regions where they still don t have occurrence records, including places of high interest for conservation.
Resumo:
How ecologically similar species are able to coexist has always generated great interest in the scientific community. Classical niche theory predicts that species coexistence is only possible when they segregate in at least one dimension of the ecological niche, thus leading to ecological differentiation among species. However, recent work has shown that species that are more similar in some ecological traits are the ones more prone to be able to coexist (environmental filter). The knowledge of how these forces act shaping ecological communities can reveal co-existence strategies, providing important information for management and conservation of the species. This study tested these hypotheses using a pair of coexisting species of Herpsilochmus, H. pectoralis and H. sellowi. In this study I use high resolution (50 x 50 m) ecological niche models to Identify which environmental factors best predict species occurrence. Next, I calculate the overlap in habitat use by species and build null models to test the hypothesis of spatial niche segregation. In addition, I obtain the selectivity parameters of habitat use to test whether the species H. pectoralis (larger body size) is less selective than H. sellowi (smaller body size) as stated in the literature for other species. The results reject the ecological equivalence among species, revealing that the species of Herpsilochmus explore the habitat differently, having different environmental niches. The hypothesis of environmental filter was not observed in my analysis, the observed overlap in habitat use among species was lower than expected by chance. Evidence that Herpsilochmus are spatially segregating reinforces the hypothesis of interspecific competition as the predominant force in the selection of microhabitat of the species. However, more data and experiments are necessary to state categorically that the observed pattern is a result of current or past competition
Resumo:
The visual system is an important link between the animal and the environment, com profound influences on the habits and lifestyle in various habitats. Adaptive mechanismsto the temporal niche are present in the visual system of many vertebrates, involving changins in ocular dimensios and design, retinal cell distribution and organization of neurochemical circuits related to the retinal resolution or sensitivity. The sensory system of the eye is represented by the retina, whose organization is responsible by receipty, initial analysis, and transmission of the information to the brain. The knowledge of the position of the eyes in the head and the distribution of retinal cells allow to identify adaptive aspects of each species to its visual field, which is characteristic to the ecological niche it occupies. In this research, we study eye anatomical characteristics and retina neurochemical features of the rock cavy (Kerodon rupestris), a tipical Brazilian rodent from the suborder Hystricomorpha, family Caviidae. The rock cavy has lateral eyes well constitute bony orbit and well differentiated extrinsic muscle. The study of the descriptive and morphometric anatomy of the showed mean values of axial diameter 10.7±0,5mm and equatorial diameter 11.6±0.7mm. The pupil is slit shaped and the lens has mean axial diameter 5.4±0.03 mm, corresponding to ~45% of the axial diameter of the eye. The posterior nodal distance and the retinal magnification factor were estimated at 6.74 mm e 118 μm/grau, respectively. Flat mounts were processed for Nissl stain, and the topographic distribution of ganglion cells showed a moderate visual band, just below the optic disc, with higher density in the ventral retina. Retinal vertical sections and flat mounts were processed for immunohistochemistry to visualize tyrosine hydroxilase (TH) and thus two types of TH+ cells were detected. Type 1 cells had strong TH-immunoreactivity, the body cell varied from 120.047 to 269.373 μm2 stratifying in the sublamina 1 of the IPL. Type 2 cells were weakly TH-imunoreactive, had cell body located mostly in the IPL, varying from 54.848 to 177.142 μm2, constituting ~10% of the TH+ cells. Both cell types exhibited similar topographic distribution with higher density found in a horizontal band along of the naso-temporal axis in the dorsal retina. The total population of dopaminergic cells was 2,156±469,4 cells, occupying an average area of 198,164 μm2. The presence of cones and rods was detected by immunohistochemistry in vertical sections and flat mounts. S cones density is around 10 times smaller than L cones, with different degree of spatial organization. Other retinal neuronal populations of the rock cavy were also detected in vertical sections with specific markers. Comparative analysis of the anatomical characteristics of the rock cavy eye 12 suggest that it was designed to acquire higher sensitivity to light, at expense of image sharpness, compatible with a vision at mesopic conditions. Additionally, the distribution of the 2 subtypes of dopaminergic cells in a naso-temporal band in the dorsal retina seems suitable to a gain in sensitivity, coherent with an animal with predominantly crepuscular activity pattern
Resumo:
The genus Herpsilochmus is composed mainly of cryptic species, among them is Herpsilochmus rufimarginatus, which is currently represented by four subspecies: H. r. rufimarginatus, H. r. frater, H. r. scapularis and H. r. exiguus. Differences in plumage and vocalization suggest that there are more than one species involved in this complex. Thus this and other subspecific taxa need urgent revision, the disjunct distribution of this species also allows us to infer the relationship between birds that occur in this biome and / or different centers of endemism. This study aims to make a taxonomic revision of the taxa included in the complex time Herpsilochmus rufimarginatus based on morphological, morphometric, vocals and geographical distribution of this bird. Besides creating distribution models current potential and make the reconstruction of the distribution bygone using ecological niche modeling, and testing the niche conservatism and divergence between different subspecies. Consultations for examination of the skins of specimens of the museums: Museum of Zoology, University of São Paulo (MZUSP), National Museum of Rio de Janeiro (MN) and Emilio Goeldi Museum of Pará (MPEG), and the skins deposited at the collection of Ornithological Federal University of Rio Grande do Norte (COUFRN). We studied the following measures length of specimens: exposed culmen, culmen and total culmen nostril, tarsus, wing and tail flattened. The voice analysis was performed with vocalizations banks and / or digital banks people where 17 voice parameters were measured. This information and more available in the literature were used to assemble a bunch of data under the limit distribution of taxa and generate ecological niche models. This analyzes carried out in the program Maxent, having as model selection criterion the AUC, and the models were greater than 0.80 are considered good models. Environmental data for the realization of the modeling were downloaded on the website of Worldclim. The morphometric information, vocals and geographic distribution point for the separation of these taxa to be considering various uni and multivariate analyzes. The potential distribution models performed well (AUC> 0.80), and its distribution associated with environmental characteristics of the Amazon forest and Atlantic forest (forests of south and southeast, northeast and forest). The reconstruction of the distribution indicates a possible contact between the southern part of the Atlantic forest in the northern part of the Amazon. The analysis of niche overlap showed a low overlap between taxa and comparisons between the null model and the generated overlay link probably occurring niche conservatism. The data suggest that the taxa that occur in the Amazon and Atlantic forest represent three distinct species
Resumo:
The infection caused by Helicobacter pylori (H. pylori) is associated with gastroduodenal inflammation can lead to the development of gastritis, gastric or duodenal ulcer and gastric cancer (type 1 carcinogen for stomach cancer). Amoxicillin is used as first-line therapy in the treatment of H. pylori associated to metronidazole or clarithromycin, and a proton pump inhibitor. However, the scheme is not fully effective due to inadequate accumulation of antibiotics in gastric tissue, inadequate efficacy of ecological niche of H. pylori, and other factors. In this context, this study aimed to obtaining and characterization of particulate systems gastrorretentivos chitosan - amoxicillin aiming its use for treatment of H. pylori infections. The particles were obtained by the coacervation method / precipitation using sodium sulfate as precipitating agent and crosslinking and two techniques: addition of amoxicillin during preparation in a single step and the sorption particles prior to amoxycillin prepared by coacervation / precipitation and spray drying. The physicochemical characterization of the particles was performed by SEM, FTIR, DSC, TG and XRD. The in vitro release profile of amoxycillin free and incorporated in the particles was obtained in 0.1 N HCl (pH = 1.2). The particles have higher encapsulation efficiency to 80% spherical shape with interconnected particles or adhered to each other, the nanometric diameter to the systems obtained by coacervation / precipitation and fine for the particles obtained by spray drying. The characterization by FTIR, DSC and XRD showed that the drug was incorporated into the nanoparticles dispersed in the polymeric matrix. Thermal analysis (TG and DSC) indicated that encapsulation provides greater heat stability to the drug. Amoxicillin encapsulated in nanoparticles had slower release compared to free drug. The particles showed release profile with a faster initial stage (burst effect) reaching a maximum at 30 minutes 35% of amoxicillin for the system in 1: 1 ratio relative to the polymer and 80% for the system in the ratio 2: 1. Although simple and provide high encapsulation efficiency of amoxicillin, the process of coacervation, precipitation in one step using sodium sulfate as precipitant / cross-linker must be optimized in order to adjust the release kinetics according to the intended application.