5 resultados para ESEO spacecraft simulator thermal power

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The stabilization of energy supply in Brazil has been a challenge for the operation of the National Interconnected System in face of hydrological and climatic variations. Thermoelectric plants have been used as an emergency source for periods of water scarcity. The utilization of fossil fuels, however, has elevated the cost of electricity. On the other hand, offshore wind energy has gained importance in the international context and is competitive enough to become a possibility for future generation in Brazil. In this scenario, the main goal of this thesis was to investigate the magnitude and distribution of offshore wind resources, and also verify the possibilities of complementing hydropower. A data series of precipitation from the Climatic Research Unit (CRU) Blended Sea Winds from the National Climatic Data Center (NCDC/NOAA) were used. According to statistical criteria, three types of complementarity were found in the Brazilian territory: hydro × hydro, wind × wind and hydro × wind. It was noted a significant complementarity between wind and hydro resources (r = -0.65), mainly for the hydrographical basins of the southeast and central regions with Northeastern Brazil winds. To refine the extrapolation of winds over the ocean, a method based on the Monin-Obukhov theory was used to model the stability of the atmospheric boundary layer. Objectively Analyzed Air-Sea Flux (OAFLUX) datasets for heat flux, temperature and humidity, and also sea level pressure data from NCEP/NCAR were used. The ETOPO1 from the National Geophysical Data Center (NGDC/NOAA) provided bathymetric data. It was found that shallow waters, between 0-20 meters, have a resource estimated at 559 GW. The contribution of wind resources to hydroelectric reservoir operation was investigated with a simplified hybrid wind-hydraulic model, and reservoir level, inflow, outflow and turbine production data. It was found that the hybrid system avoids drought periods, continuously saving water from reservoirs through wind production. Therefore, from the results obtained, it is possible to state that the good winds from the Brazilian coast can, besides diversifying the electric matrix, stabilize the hydrological fluctuations avoiding rationing and blackouts, reducing the use of thermal power plants, increasing the production cost and emission of greenhouse gases. Public policies targeted to offshore wind energy will be necessary for its full development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the oil industry, natural gas is a vital component of the world energy supply and an important source of hydrocarbons. It is one of the cleanest, safest and most relevant of all energy sources, and helps to meet the world's growing demand for clean energy in the future. With the growing share of natural gas in the Brazil energy matrix, the main purpose of its use has been the supply of electricity by thermal power generation. In the current production process, as in a Natural Gas Processing Unit (NGPU), natural gas undergoes various separation units aimed at producing liquefied natural gas and fuel gas. The latter should be specified to meet the thermal machines specifications. In the case of remote wells, the process of absorption of heavy components aims the match of fuel gas application and thereby is an alternative to increase the energy matrix. Currently, due to the high demand for this raw gas, research and development techniques aimed at adjusting natural gas are studied. Conventional methods employed today, such as physical absorption, show good results. The objective of this dissertation is to evaluate the removal of heavy components of natural gas by absorption. In this research it was used as the absorbent octyl alcohol (1-octanol). The influence of temperature (5 and 40 °C) and flowrate (25 and 50 ml/min) on the absorption process was studied. Absorption capacity expressed by the amount absorbed and kinetic parameters, expressed by the mass transfer coefficient, were evaluated. As expected from the literature, it was observed that the absorption of heavy hydrocarbon fraction is favored by lowering the temperature. Moreover, both temperature and flowrate favors mass transfer (kinetic effect). The absorption kinetics for removal of heavy components was monitored by chromatographic analysis and the experimental results demonstrated a high percentage of recovery of heavy components. Furthermore, it was observed that the use of octyl alcohol as absorbent was feasible for the requested separation process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the oil industry, natural gas is a vital component of the world energy supply and an important source of hydrocarbons. It is one of the cleanest, safest and most relevant of all energy sources, and helps to meet the world's growing demand for clean energy in the future. With the growing share of natural gas in the Brazil energy matrix, the main purpose of its use has been the supply of electricity by thermal power generation. In the current production process, as in a Natural Gas Processing Unit (NGPU), natural gas undergoes various separation units aimed at producing liquefied natural gas and fuel gas. The latter should be specified to meet the thermal machines specifications. In the case of remote wells, the process of absorption of heavy components aims the match of fuel gas application and thereby is an alternative to increase the energy matrix. Currently, due to the high demand for this raw gas, research and development techniques aimed at adjusting natural gas are studied. Conventional methods employed today, such as physical absorption, show good results. The objective of this dissertation is to evaluate the removal of heavy components of natural gas by absorption. In this research it was used as the absorbent octyl alcohol (1-octanol). The influence of temperature (5 and 40 °C) and flowrate (25 and 50 ml/min) on the absorption process was studied. Absorption capacity expressed by the amount absorbed and kinetic parameters, expressed by the mass transfer coefficient, were evaluated. As expected from the literature, it was observed that the absorption of heavy hydrocarbon fraction is favored by lowering the temperature. Moreover, both temperature and flowrate favors mass transfer (kinetic effect). The absorption kinetics for removal of heavy components was monitored by chromatographic analysis and the experimental results demonstrated a high percentage of recovery of heavy components. Furthermore, it was observed that the use of octyl alcohol as absorbent was feasible for the requested separation process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work proposes a model to investigate the use of a cylindrical antenna used in the thermal method of recovering through electromagnetic radiation of high-viscosity oil. The antenna has a simple geometry, adapted dipole type, and it can be modelled by using Maxwell s equation. The wavelet transforms are used as basis functions and applied in conjunction with the method of moments to obtain the current distribution in the antenna. The electric field, power and temperature distribution are carefully calculated for the analysis of the antenna as electromagnetic heating. The energy performance is analyzed based on thermo-fluid dynamic simulations at field scale, and through the adaptation in the Steam Thermal and Advanced Processes Reservoir Simulator (STARS) by Computer Modelling Group (CMG). The model proposed and the numerical results obtained are stable and presented good agreement with the results reported in the specialized literature

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work proposes a model to investigate the use of a cylindrical antenna used in the thermal method of recovering through electromagnetic radiation of high-viscosity oil. The antenna has a simple geometry, adapted dipole type, and it can be modelled by using Maxwell s equation. The wavelet transforms are used as basis functions and applied in conjunction with the method of moments to obtain the current distribution in the antenna. The electric field, power and temperature distribution are carefully calculated for the analysis of the antenna as electromagnetic heating. The energy performance is analyzed based on thermo-fluid dynamic simulations at field scale, and through the adaptation in the Steam Thermal and Advanced Processes Reservoir Simulator (STARS) by Computer Modelling Group (CMG). The model proposed and the numerical results obtained are stable and presented good agreement with the results reported in the specialized literature