9 resultados para ENVELOPE
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Building design is an effective way to achieve HVAC energy consumption reduction. However, this potentiality is often neglected by architects due to the lack of references to support design decisions. This works intends to propose architectural design guidelines for energy efficiency and thermal performance of Campus/UFRN buildings. These guidelines are based on computer simulations results using the software DesignBuilder. The definition of simulation models has begun with envelope variables, partially done after a field study of thirteen buildings at UFRN/Campus. This field study indicated some basic envelope patterns that were applied in simulation models. Occupation variables were identified with temperature and energy consumption monitoring procedures and a verification of illumination and equipment power, both developed at the Campus/UFRN administration building. Three simulation models were proposed according to different design phases and decisions. The first model represents early design decisions, simulating the combination of different types of geometry with three levels of envelope thermal performance. The second model, still as a part of early design phase, analyses thermal changes between circulation halls lateral and central and office rooms, as well as the heat fluxes and monthly temperatures in each circulation hall. The third model analyses the influence of middle-design and detail design decisions on energy consumption and thermal performance. In this model, different solutions of roofs, shading devices, walls and external colors were simulated. The results of all simulation models suggest a high influence of thermal loads due to the incidence of solar radiation on windows and surfaces, which highlights the importance of window shading devices, office room orientation and absorptance of roof and walls surfaces
Resumo:
The building envelope is the principal mean of interaction between indoors and environment, with direct influence on thermal and energy performance of the building. By intervening in the envelope, with the proposal of specific architectural elements, it is possible to promote the use of passive strategies of conditioning, such as natural ventilation. The cross ventilation is recommended by the NBR 15220-3 as the bioclimatic main strategy for the hot and humid climate of Natal/RN, offering among other benefits, the thermal comfort of occupants. The analysis tools of natural ventilation, on the other hand, cover a variety of techniques, from the simplified calculation methods to computer fluid dynamics, whose limitations are discussed in several papers, but without detailing the problems encountered. In this sense, the present study aims to evaluate the potential of wind catchers, envelope elements used to increase natural ventilation in the building, through CFD simplified simulation. Moreover, it seeks to quantify the limitations encountered during the analysis. For this, the procedure adopted to evaluate the elements implementation and efficiency was the CFD simulation, abbreviation for Computer Fluid Dynamics, with the software DesignBuilder CFD. It was defined a base case, where wind catchers were added with various settings, to compare them with each other and appreciate the differences in flows and air speeds encountered. Initially there has been done sensitivity tests for familiarization with the software and observe simulation patterns, mapping the settings used and simulation time for each case simulated. The results show the limitations encountered during the simulation process, as well as an overview of the efficiency and potential of wind catchers, with the increase of ventilation with the use of catchers, differences in air flow patterns and significant increase in air speeds indoors, besides changes found due to different element geometries. It is considered that the software used can help designers during preliminary analysis in the early stages of design
Resumo:
The goal of the research was to investigate the energy performance of residential vertical buildings envelope in the hot and humid climate of Natal, capital of Rio Grande do Norte, based in the Technical Regulation of Quality for Energy Efficiency Level in Residential Buildings (RTQ -R), launched in 2010. The study pretends to contribute to the development of design strategies appropriate to the specific local climate and the increasing of energy efficiency level of the envelope. The methodological procedures included the survey in 22 (twenty two) residential buildings, the formulation of representative prototypes based on typological and constructives characters researched and the classification of the level of energy efficiency in the envelopment of these prototypes, using as a tool the prescriptive method of the RTQ-R and the parametric analyzes from assigning different values of the following variables: shape of the pavement type; distribution of housing compartments; orientation of the building; area and shading of openings; thermal transmittance, and solar absorptance of opaque materials of the frontage in order to evaluate the influence of these on the envelopment performance. The main results accomplished with this work includes the qualification of vertical residential buildings in Natal/RN; the verification of the adequacy of these buildings to local climate based from the diagnosis of the thermal energy of the envelopment performance, the identification of variables with more significant influence on the prescriptive methodology of RTQ-R and design solutions more favorable to obtain higher levels energy efficiency by this method. Finally, it was verified, that some of these solutions proved contradictory in relation to the recommendations contained in the theoretical approaches regarding environmental comfort in hot and humid weather, which indicates the need for improvement of the prescriptive method RTQ-R and further research on efficient design solutions
Resumo:
Mira and R Coronae Borealis (R CrB) variable stars are evolved objects surrounded by circumstellar envelopes (CSE) composed of the ejected stellar material. We present a detailed high-spatial resolution morfological study of the CSE of three stars: IRC+10216, the closest and more studied Carbon-Rich Mira; o Ceti, the prototype of the Mira class; and RY Sagitarii (RY Sgr), the brightest R CrB variable of the south hemisphere. JHKL near-infrared adaptive optics images of IRC+10216 with high dynamic range and Vband images with high angular resolution and high depth, collected with the VLT/NACO and VLT/FORS1 instruments, were analyzed. NACO images of o Ceti were also analyzed. Interferometric observations of RY Sgr collected with the VLTI/MIDI instrument allowed us to explore its CSE innermost regions (»20 40 mas). The CSE of IRC+10216 exhibit, in near-infrared, clumps with more complex relative displacements than proposed in previous studies. In V-band, the majority of the non-concentric shells, located in the outer CSE layers, seem to be composed of thinner elongated shells. In a global view, the morphological connection between the shells and the bipolar core of the nebulae, located in the outer layers, together with the clumps, located in the innermost regions, has a difficult interpretation. In the CSE of o Ceti, preliminar results would be indicating the presence of possible clumps. In the innermost regions (.110 UA) of the CSE of RY Sgr, two clouds were detected in different epochs, embedded in a variable gaussian envelope. Based on a rigorous verification, the first cloud was located at »100 R¤ (or »30 AU) from the centre, toward the east-north-east direction (modulo 180o) and the second one was almost at a perpendicular direction, having aproximately 2£ the distance of the first cloud. This study introduces new constraints to the mass-loss history of these kind of variables and to the morphology of their innermost CSE regions
Resumo:
In the present work we study the processes of heating in the high stellar atmosphere, with base in an analysis of behavior of the cromospheric and coronal emission for a sample of single stars classified as giant in the literature. The evolutionary status of the stars of the sample was determined from HIPPARCOS satellite trigonometric parallax measurements and from the Toulouse Genéve code. In this study we show the form of behavior of the CaII emission flux in spectral lines H and K F(CaII) and the X-ray emission flux in function of the rotation, number of Rossby Ro and depth in mass of the convective envelope. In this analysis we show that while the cromospheric activity is dominated clearly by a physical process of heating associated with the rotation, like a magnetic field produced by dynamo effect, the coronal activity seems to be influenced for a mechanism independent of the rotation. We show also that the effective role of the depth in massa of the convective envelope on the stellar activity has an important effect in the responsible physical process for the behavior of the activity in the atmosphere of the stars.
Resumo:
The study physical process that control the stellar evolution is strength influenced by several stellar parameters, like as rotational velocity, convective envelope mass deepening, and magnetic field intensity. In this study we analyzed the interconnection of some stellar parameters, as Lithium abundance A(Li), chromospheric activity and magnetic field intensity as well as the variation of these parameters as a function of age, rotational velocity, and the convective envelope mass deepening for a selected sample of solar analogs and twins stars. In particular, we analyzed the convective envelope mass deepening and the dispersion of lithium abundance for these stars. We also studied the evolution of rotation in subgiants stars, because its belong to the following evolutionary stage of solar analogs, and twins stars. For this analyze, we compute evolutionary models with the TGEC code to derive the evolutionary stage, as well as the convective envelope mass deepening, and derive more precisely the stellar mass, and age for this 118 stars. Our Investigation shows a considerable dispersion of lithium abundance for the solar analogs stars. We also realize that this dispersion is not by the convective zone deep, in this way we observed which the scattering of A(Li) can not be explained by classical theories of mixing in the convective zone. In conclusion we have that are necessary extra-mixing process to explain this decrease of Lithium abundance in solar analogs and twins stars. We analyzed the subgiant stars because this are the subsequent evolutionary stage after the solar analogs and twins stars. For this analysis, we compute the rotational period for 30 subgiants stars observed by Co- RoT satellite. For this task we apply two different methods: Lomb-Scargle algorithm, and the Plavchan Periodogram. We apply the TGEC code we compute models with internal distribution of angular momentum to confront the predict results with the models, and the observational results. With this analyze, we showed which solid body rotation models are incompatible with the physical interpretation of observational results. As a result of our study we still concluded that the magnetic field, convective envelope mass deepening, and internal redistribution of angular momentum are essential to explain the evolution of low-mass stars, and its observational characteristics. Based on population synthesis simulation, we concluded that the solar neighborhood presents a considerable quantity of solar twins when compared with the discovered set nowadays. Altogether we foresee the existence around 400 solar analogs in the solar neighborhood (distance of 100 pc). We also study the angular momentum of solar analogs and twins, in this study we concluded that added angular momentum from a Jupiter type planet, putted in the Jupiter position, is not enough to explain the angular momentum predicted by Kraft law (Kraft 1970)
Sobre a relação entre rotação, atividade crosmosférica e abundância de lítio em estrelas subgigantes
Resumo:
The connection between rotation, CaII emission flux and lithium abundance is analyzed for a sample of subgiant stars, with evolutionary status was determined from the Toulouse-Geneve code and HlPPARCOS trigonometric parallax measurements. We noted that the distribution of rotation and CaII emission flux, as a function of effective temperature, shows a discontinuity located around the same spectral type, F8IV. Stars located blueward of this spectral type, exhibit a large spread of values of rotation and CaII flux, whereas stars redward of F8lV show essentially low ratation anel low CaII flux. The strength of these declines nevertheless, depends on stellar mass. The distribution of lithium abundances also shows a discontinuity, however with behavior a little more complex for subgiants with mass lower than about 1.2 Solar Masses, this decrease is observed later than that in rotation and CaII flux, whereas for masses higher than 1.2 Solar Masses the decrease in lithium abundance is located around the spectral type F8IV. The discrepancy between the location of the discontinuities of rotation and CaII flux and log n(Li) for stars with masses lower than 102 Solar Masses, seems to reflect the sensitivity of these phenomena to the mass of the convective envelope. The drop in rotation, which results mostly from a magnetic braking, requires an increase in the mass of the convective envelope less than that required for the decrease in lithium abundance The location of the discontinuity in log n( Li) in the same region of the discontinuity ties in rotation and CaII flux, for stars with masses higher than 1.2 Solar Masses, may also be explained by the behavior of the deepening of the convective envelope. In contrast to the relationship between rotation and CaII flux the relationship between lithium abundance and rotation shows no dear tendency toward linear behavior. Similarly, the same tendency is observed in the relationship between lithium abundance and CaII flux in spite of these facts, subgiants with high lithium content also have high rotation and high CaII emission flux. We also observed that stars with high lithium content present, in its majority, an undeveloped convective envelope, whereas stars with low lithium content have a developed convective envelope. In the case of the rotation, stars with undeveloped convective envelope, show rotational velocities as much high as low, whereas stars with developed convective envelope only present low rotation
Resumo:
Dengue is considered as the most important arthropod-borne viral disease throughout the world due to the high number of people at risk to be infected, mainly in tropical and subtropical regions of the planet. The etiologic agent is Dengue Virus (DENV), it is a single positive-stranded RNA virus of the family Flavivirus, genus Flaviviridae. Four serotypes are known, DENV-1, DENV-2, DENV-3 and DENV-4. One of the most important characteristic of these viruses is the genetic variability, which demands phylogenetic and evolutionary studies to understand key aspects like: epidemiology, virulence, migration patterns and antigenic characteristics. The objective of this study is the genetic characterization of dengue viruses circulating in the state of Rio Grande does Norte from January 2010 to December 2012. The complete E gene (1485 pb) of DENV1, 2 e 4 from Brazilian (Rio Grande do Norte) patients was sequenced. Phylogenetic analysis was performed using MEGA 5.2 software, Tamura-Nei model and Neighbor-Joining trees were inferred for the datasets. In Brazil, there is just one DENV-1 genotype (genotype V), one DENV-2 genotype (Asian/American) and two DENV-4 genotypes (genotypes I and II). Brazilian strains of DENV-1 are subdivided in two different lineages (BR-I and BR-II), the Brazilian strains of DENV-2 are subdivided in four lineages (BRI-IV) and genotype II of DENV-4 is subdivided in three Brazilian lineages (BRI-III). The viruses isolated in RN belong to lineage BR-II (DENV-1), BR-IV (DENV-2) and BR-III (DENV-4).The Caribbean and near Latin American countries are the main source of these viruses to Brazil. Amino acids substitutions were detected in three domains of E protein, this makes clear the necessity of studies that associate epidemiological and molecular data to better understand the effects of these mutations. This is the first study about genetic characterization and evolution of Dengue viruses in Rio Grande do Norte, Brazil
Resumo:
The projected rotational velocity together with lithium abundance and the onset of the dilution by the deepening in mass of the convective envelope provide a key tool to investigate the so far poorly understood processes at work in stellar interiors of solar-analog stars. To investigate the link between abundances, convection and rotational velocities in solar-analog G dwarf stars, we study a bona fide sample of 118 selected solar-analog G dwarf stars presenting measured lithium abundances, rotational velocities, and fundamental parameters together with computed evolutionary tracks (Toulouse-Geneva code) for a range of stellar masses around 1 M and metallicity consistent with the solar-analog range. The aim of this work is to build up an evolution of lithium and rotation as a function of stellar age, mass, effective temperature, and convection. We analyze the evolutionary status of the sample of 118 solar-analog G dwarf in the HR diagram based on Hipparcos data and using a grid of stellar models in the effective temperature and mass range of the solar-analog stars. We discuss the deepening (in mass) of the convective envelope and the influence on the Li abundances and projected rotational velocities. We determined the stellar mass and the mass of the convective envelope for a bona fide sample of 118 selected solar-analog G dwarf and checked the evolutionary link between the rotational velocity, lithium abundance, and the deepening of the convective envelope. Fast rotators (vsini 6 km s��1) are also stars with high Li content. Slow rotators present a wide range of values of log n(Li). Our results shed new light on the lithium and rotational behavior in G dwarf stars. We confirmed the presence of a large Li abundance spread among the solar-analog stars and concluded that the solar twins probably share a similar mixing history with the Sun