3 resultados para ENTHALPY-ENTROPY COMPENSATION
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Discussions about pollution caused by vehicles emission are old and have been developed along the years. The search for cleaner technologies and frequent weather alterations have been inducing industries and government organizations to impose limits much more rigorous to the contaminant content in fuels, which have an direct impact in atmospheric emissions. Nowadays, the quality of fuels, in relation to the sulfur content, is carried out through the process of hydrodesulfurization. Adsorption processes also represent an interesting alternative route to the removal of sulfur content. Both processes are simpler and operate to atmospheric temperatures and pressures. This work studies the synthesis and characterization of aluminophosphate impregnate with zinc, molybdenum or both, and its application in the sulfur removal from the gasoline through the adsorption process, using a pattern gasoline containing isooctane and thiophene. The adsorbents were characterized by x-ray diffraction, differential thermal analysis (DTG), x-ray fluorescence and scanning electron microscopy (SEM). The specific area, volume and pore diameter were determined by BET (Brunauer- Emmet-Teller) and the t-plot method. The sulfur was quantified by elementary analysis using ANTEK 9000 NS. The adsorption process was evaluated as function of the temperature variation and initial sulfur content through the adsorption isotherm and its thermodynamic parameters. The parameters of entropy (ΔS), enthalpy variation (ΔH) and free Gibbs energy (ΔG) were calculated through the graph ln(Kd) versus 1/T. Langmuir, Freundlich and Langmuir-Freundlich models were adjusted to the experimental data, and the last one had presented better results. The thermodynamic tests were accomplished in different temperatures, such as 30, 40 and 50ºC, where it was concluded the adsorption process is spontaneous and exothermic. The kinetic of adsorption was studied by 24 h and it showed that the capability adsorption to the adsorbents studied respect the following order: MoZnPO > MoPO > ZnPO > AlPO. The maximum adsorption capacity was 4.91 mg/g for MoZnPO with an adsorption efficiency of 49%.
Resumo:
The nonionic surfactants when in aqueous solution, have the property of separating into two phases, one called diluted phase, with low concentration of surfactant, and the other one rich in surfactants called coacervate. The application of this kind of surfactant in extraction processes from aqueous solutions has been increasing over time, which implies the need for knowledge of the thermodynamic properties of these surfactants. In this study were determined the cloud point of polyethoxylated surfactants from nonilphenolpolietoxylated family (9,5 , 10 , 11, 12 and 13), the family from octilphenolpolietoxylated (10 e 11) and polyethoxylated lauryl alcohol (6 , 7, 8 and 9) varying the degree of ethoxylation. The method used to determine the cloud point was the observation of the turbidity of the solution heating to a ramp of 0.1 ° C / minute and for the pressure studies was used a cell high-pressure maximum ( 300 bar). Through the experimental data of the studied surfactants were used to the Flory - Huggins models, UNIQUAC and NRTL to describe the curves of cloud point, and it was studied the influence of NaCl concentration and pressure of the systems in the cloud point. This last parameter is important for the processes of oil recovery in which surfactant in solution are used in high pressures. While the effect of NaCl allows obtaining cloud points for temperatures closer to the room temperature, it is possible to use in processes without temperature control. The numerical method used to adjust the parameters was the Levenberg - Marquardt. For the model Flory- Huggins parameter settings were determined as enthalpy of the mixing, mixing entropy and the number of aggregations. For the UNIQUAC and NRTL models were adjusted interaction parameters aij using a quadratic dependence with temperature. The parameters obtained had good adjust to the experimental data RSMD < 0.3 %. The results showed that both, ethoxylation degree and pressure increase the cloudy points, whereas the NaCl decrease
Resumo:
This work is a study of coordination compounds by quantum theory of atoms in molecules (QTAIM), based on the topological analysis of the electron density of molecular systems, both theoretically and experimentally obtained. The coordination chemistry topics which were studied are the chelate effect, bent titanocene and chemical bond in coordination complexes. The chelate effect was investigated according to topological and thermodynamic parameters. The exchange of monodentate ligands on polydentate ligands from same transition metal increases the stability of the complex both from entropy and enthalpy contributions. In some cases, the latter had a higher contribution to the stability of the complex in comparison with entropy. This enthalpic contribution is explained according to topological analysis of the M-ligand bonds where polidentate complex had higher values of electron density of bond critical point, Laplacian of electron density of bond critical point and delocalization index (number of shared electrons between two atoms). In the second chapter, was studied bent titanocenes with bulky cyclopentadienyl derivative π-ligand. The topological study showed the presence of secondary interactions between the atoms of π-ligands or between atoms of π-ligand and -ligand. It was found that, in the case of titanocenes with small difference in point group symmetry and with bulky ligands, there was an nearly linear relationship between stability and delocalization index involving the ring carbon atoms (Cp) and the titanium. However, the titanocene stability is not only related to the interaction between Ti and C atoms of Cp ring, but secondary interactions also play important role on the stability of voluminous titanocenes. The third chapter deals with the chemical bond in coordination compounds by means of QTAIM. The quantum theory of atoms in molecules so far classifies bonds and chemical interactions in two categories: closed shell interaction (ionic bond, hydrogen bond, van der Waals interaction, etc) and shared interaction (covalent bond). Based on topological parameters such as electron density, Laplacian of electron density, delocalization index, among others, was classified the chemical bond in coordination compounds as an intermediate between closed shell and shared interactions