4 resultados para ENERGY COMPONENT
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Recent astronomical observations (involving supernovae type Ia, cosmic background radiation anisotropy and galaxy clusters probes) have provided strong evidence that the observed universe is described by an accelerating, flat model whose space-time properties can be represented by the FriedmannRobertsonWalker (FRW) metric. However, the nature of the substance or mechanism behind the current cosmic acceleration remains unknown and its determination constitutes a challenging problem for modern cosmology. In the general relativistic description, an accelerat ing regime is usually obtained by assuming the existence of an exotic energy component endowed with negative pressure, called dark energy, which is usually represented by a cosmological constant ¤ associated to the vacuum energy density. All observational data available so far are in good agreement with the concordance cosmic ¤CDM model. Nevertheless, such models are plagued with several problems thereby inspiring many authors to propose alternative candidates in the relativistic context. In this thesis, a new kind of accelerating flat model with no dark energy and fully dominated by cold dark matter (CDM) is proposed. The number of CDM particles is not conserved and the present accelerating stage is a consequence of the negative pressure describing the irreversible process of gravitational particle creation. In order to have a transition from a decelerating to an accelerating regime at low redshifts, the matter creation rate proposed here depends on 2 parameters (y and ߯): the first one identifies a constant term of the order of H0 and the second one describes a time variation proportional to he Hubble parameter H(t). In this scenario, H0 does not need to be small in order to solve the age problem and the transition happens even if there is no matter creation during the radiation and part of the matter dominated phase (when the ß term is negligible). Like in flat ACDM scenarios, the dimming of distant type Ia supernovae can be fitted with just one free parameter, and the coincidence problem plaguing the models driven by the cosmological constant. ACDM is absent. The limits endowed with with the existence of the quasar APM 08279+5255, located at z = 3:91 and with an estimated ages between 2 and 3 Gyr are also investigated. In the simplest case (ß = 0), the model is compatible with the existence of the quasar for y > 0:56 whether the age of the quasar is 2.0 Gyr. For 3 Gyr the limit derived is y > 0:72. New limits for the formation redshift of the quasar are also established
Resumo:
Significant observational effort has been directed to unveiling the nature of the so-called dark energy. However, given the large number of theoretical possibilities, it is possible that this a task cannot be based only on observational data. In this thesis we investigate the dark energy via a thermodynamics approach, i.e., we discuss some thermodynamic properties of this energy component assuming a general time-dependent equation-of-state (EoS) parameter w(a) = w0 + waf(a), where w0 and wa are constants and f(a) may assume different forms. We show that very restrictive bounds can be placed on the w0 - wa space when current observational data are combined with the thermodynamic constraints derived. Moreover, we include a non-zero chemical potential μ and a varying EoS parameter of the type ω(a) = ω0 + F(a), therefore more general, in this thermodynamical description. We derive generalized expressions for the entropy density and chemical potential, noting that the dark energy temperature T and μ evolve in the same way in the course of the cosmic expansion. The positiveness of entropy S is used to impose thermodynamic bounds on the EoS parameter ω(a). In particular, we find that a phantom-like behavior ω(a) < −1 is allowed only when the chemical potential is a negative quantity (μ < 0). Thermodynamically speaking, a complete treatment has been proposed, when we address the interaction between matter and energy dark
Resumo:
The recent observational advances of Astronomy and a more consistent theoretical framework turned Cosmology in one of the most exciting frontiers of contemporary science. In this thesis, homogeneous and inhomogeneous Universe models containing dark matter and different kinds of dark energy are confronted with recent observational data. Initially, we analyze constraints from the existence of old high redshift objects, Supernovas type Ia and the gas mass fraction of galaxy clusters for 2 distinct classes of homogeneous and isotropic models: decaying vacuum and X(z)CDM cosmologies. By considering the quasar APM 08279+5255 at z = 3.91 with age between 2-3 Gyr, we obtain 0,2 < OM < 0,4 while for the j3 parameter which quantifies the contribution of A( t) is restricted to the intervalO, 07 < j3 < 0,32 thereby implying that the minimal age of the Universe amounts to 13.4 Gyr. A lower limit to the quasar formation redshift (zJ > 5,11) was also obtained. Our analyzes including flat, closed and hyperbolic models show that there is no an age crisis for this kind of decaying A( t) scenario. Tests from SN e Ia and gas mass fraction data were realized for flat X(z)CDM models. For an equation of state, úJ(z) = úJo + úJIZ, the best fit is úJo = -1,25, úJl = 1,3 and OM = 0,26, whereas for models with úJ(z) = úJo+úJlz/(l+z), we obtainúJo = -1,4, úJl = 2,57 and OM = 0,26. In another line of development, we have discussed the influence of the observed inhomogeneities by considering the Zeldovich-Kantowski-DyerRoeder (ZKDR) angular diameter distance. By applying the statistical X2 method to a sample of angular diameter for compact radio sources, the best fit to the cosmological parameters for XCDM models are OM = O, 26,úJ = -1,03 and a = 0,9, where úJ and a are the equation of state and the smoothness parameters, respectively. Such results are compatible with a phantom energy component (úJ < -1). The possible bidimensional spaces associated to the plane (a , OM) were restricted by using data from SNe Ia and gas mass fraction of galaxy clusters. For Supernovas the parameters are restricted to the interval 0,32 < OM < 0,5(20") and 0,32 < a < 1,0(20"), while to the gas mass fraction we find 0,18 < OM < 0,32(20") with alI alIowed values of a. For a joint analysis involving Supernovas and gas mass fraction data we obtained 0,18 < OM < 0,38(20"). In general grounds, the present study suggests that the influence of the cosmological inhomogeneities in the matter distribution need to be considered with more detail in the analyses of the observational tests. Further, the analytical treatment based on the ZKDR distance may give non-negligible corrections to the so-calIed background tests of FRW type cosmologies
Resumo:
In this dissertation, after a brief review on the Einstein s General Relativity Theory and its application to the Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmological models, we present and discuss the alternative theories of gravity dubbed f(R) gravity. These theories come about when one substitute in the Einstein-Hilbert action the Ricci curvature R by some well behaved nonlinear function f(R). They provide an alternative way to explain the current cosmic acceleration with no need of invoking neither a dark energy component, nor the existence of extra spatial dimensions. In dealing with f(R) gravity, two different variational approaches may be followed, namely the metric and the Palatini formalisms, which lead to very different equations of motion. We briefly describe the metric formalism and then concentrate on the Palatini variational approach to the gravity action. We make a systematic and detailed derivation of the field equations for Palatini f(R) gravity, which generalize the Einsteins equations of General Relativity, and obtain also the generalized Friedmann equations, which can be used for cosmological tests. As an example, using recent compilations of type Ia Supernovae observations, we show how the f(R) = R − fi/Rn class of gravity theories explain the recent observed acceleration of the universe by placing reasonable constraints on the free parameters fi and n. We also examine the question as to whether Palatini f(R) gravity theories permit space-times in which causality, a fundamental issue in any physical theory [22], is violated. As is well known, in General Relativity there are solutions to the viii field equations that have causal anomalies in the form of closed time-like curves, the renowned Gödel model being the best known example of such a solution. Here we show that every perfect-fluid Gödel-type solution of Palatini f(R) gravity with density and pressure p that satisfy the weak energy condition + p 0 is necessarily isometric to the Gödel geometry, demonstrating, therefore, that these theories present causal anomalies in the form of closed time-like curves. This result extends a theorem on Gödel-type models to the framework of Palatini f(R) gravity theory. We derive an expression for a critical radius rc (beyond which causality is violated) for an arbitrary Palatini f(R) theory. The expression makes apparent that the violation of causality depends on the form of f(R) and on the matter content components. We concretely examine the Gödel-type perfect-fluid solutions in the f(R) = R−fi/Rn class of Palatini gravity theories, and show that for positive matter density and for fi and n in the range permitted by the observations, these theories do not admit the Gödel geometry as a perfect-fluid solution of its field equations. In this sense, f(R) gravity theory remedies the causal pathology in the form of closed timelike curves which is allowed in General Relativity. We also examine the violation of causality of Gödel-type by considering a single scalar field as the matter content. For this source, we show that Palatini f(R) gravity gives rise to a unique Gödeltype solution with no violation of causality. Finally, we show that by combining a perfect fluid plus a scalar field as sources of Gödel-type geometries, we obtain both solutions in the form of closed time-like curves, as well as solutions with no violation of causality