2 resultados para ELONGATION-FACTOR EFTS

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Control of human visceral leishmaniasis in endemic regions is hampered in part by the lack of knowledge with respect of the role reservoirs and vector. In addition, there is not yet an understanding of how non-symptomatic subclinical infection might influence the maintenance of infection in a particular locality. Of worrisome is the limited accessibility to medical care in places with emerging drug resistance. There is still no available protective vaccine either for humans or other reservoirs. Leishmania species are protozoa that express multiple antigens which are recognized by the vertebrate immune system. Since there is not one immunodominant epitope recognized by most hosts, strategies must be developed to optimize selection of antigens for prevention and immunodiagnosis. For this reason, we generated a cDNA library from the intracellular amastigote form of Leishmania chagasi, the causative agent of South American visceral leishmaniasis. We employed a two-step expression screen of the library to systematically identify T and T-dependent B cell antigens. The first step was aimed at identifying the largest possible number of clones producing an epitope-containing polypeptide with a pool of sera from Brazilians with documented visceral leishmaniasis. After removal of clones encoding heat shock proteins, positive clones underwent a second step screen for their ability to cause proliferation and IFN-γ responses of T cells from immune mice. Six unique clones were selected from the second screen for further analysis. The clones encoded part of the coding sequence of glutamine synthetase, transitional endoplasmic reticulum ATPase, elongation factor 1γ, kinesin K-39, repetitive protein A2, and a hypothetical conserved protein. Humans naturally infected with L. chagasi mounted both cellular and antibody responses to these protein Preparations containing multiple antigens may be optimal for immunodiagnosis and protective vaccines against Leishmania

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Flowering is a process marked by switch of shoot apical meristem to floral meristem, and it involves a complex regulation by endogenous and environmental factors. Analyses of key flowering genes have been carried out primarily in Arabidopsis thaliana and have provided a foundation for understanding the underlying molecular genetic mechanisms controlling different aspects of floral development. Several homologous have been found in other species, but for crops species such as tomatoes this process is not well known. The aim of this work was to use the genetic natural variation associated to the flowering process and use molecular tools such as subtractive libraries and real time PCR in order to identify and analyze the expression from genes that may be associated to flowering in these two species: L. esculentum cv Micro-Tom and L. pimpinellifolium. Our results showed there were identified many genes related to vegetative and possibly to the flowering process. There were also identified many sequences that were unknown. We ve chosen three genes to analyze the expression by real time PCR. The histone H2A gene gave an expression higher in L. pimpinellifolium, due to this the expression of this gene may be associated to flowering in this specie. It was also analyzed the expression of an unknown gene that might be a key factor of the transition to flowering, also in L. pimpinellifolium. For the elongation factor 1-α expression, the expression results were not informative, so this gene may have a constitutive expression in vegetative and flowering state. The results observed allowed us to identify possible genes that may be related to the flowering process. For further results it will be necessary a better characterization of them.