10 resultados para Dorsal Meso-Oceânica
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
This thesis presents and discusses the results of ambient seismic noise correlation for two different environments: intraplate and Mid-Atlantic Ridge. The coda wave interferometry method has also been tested for the intraplate data. Ambient noise correlation is a method that allows to retrieve the structural response between two receivers from ambient noise records, as if one of the station was a virtual source. It has been largely used in seismology to image the subsurface and to monitor structural changes associated mostly with volcanic eruptions and large earthquakes. In the intraplate study, we were able to detect localized structural changes related to a small earthquake swarm, which main event is mR 3.7, North-East of Brazil. We also showed that the 1-bit normalization and spectral whitening result on the loss of waveform details and that the phase auto-correlation, which is amplitude unbiased, seems to be more sensitive and robust for our analysis of a small earthquake swarm. The analysis of 6 months of data using cross-correlations detect clear medium changes soon after the main event while the auto-correlations detect changes essentially after 1 month. It could be explained by fluid pressure redistribution which can be initiated by hydromechanical changes and opened path ways to shallower depth levels due to later occurring earthquakes. In the Mid-Atlantic Ridge study, we investigate structural changes associated with a mb 4.9 earthquake in the region of the Saint Paul transform fault. The data have been recorded by a single broadband seismic station located at less than 200 km from the Mid-Atlantic ridge. The results of the phase auto-correlation for a 5-month period, show a strong co-seismic medium change followed by a relatively fast post-seismic recovery. This medium change is likely related to the damages caused by the earthquake’s ground shaking. The healing process (filling of the new cracks) that lasted 60 days can be decomposed in two phases, a fast recovery (70% in ~30 days) in the early post-seismic stage and a relatively slow recovery later (30% in ~30 days). In the coda wave interferometry study, we monitor temporal changes of the subsurface caused by the small intraplate earthquake swarm mentioned previously. The method was first validated with synthetics data. We were able to detect a change of 2.5% in the source position and a 15% decrease of the scatterers’ amount. Then, from the real data, we observed a rapid decorrelation of the seismic coda after the mR 3.7 seismic event. This indicates a rapid change of the subsurface in the fault’s region induced by the earthquake.
Resumo:
This thesis presents and discusses the results of ambient seismic noise correlation for two different environments: intraplate and Mid-Atlantic Ridge. The coda wave interferometry method has also been tested for the intraplate data. Ambient noise correlation is a method that allows to retrieve the structural response between two receivers from ambient noise records, as if one of the station was a virtual source. It has been largely used in seismology to image the subsurface and to monitor structural changes associated mostly with volcanic eruptions and large earthquakes. In the intraplate study, we were able to detect localized structural changes related to a small earthquake swarm, which main event is mR 3.7, North-East of Brazil. We also showed that the 1-bit normalization and spectral whitening result on the loss of waveform details and that the phase auto-correlation, which is amplitude unbiased, seems to be more sensitive and robust for our analysis of a small earthquake swarm. The analysis of 6 months of data using cross-correlations detect clear medium changes soon after the main event while the auto-correlations detect changes essentially after 1 month. It could be explained by fluid pressure redistribution which can be initiated by hydromechanical changes and opened path ways to shallower depth levels due to later occurring earthquakes. In the Mid-Atlantic Ridge study, we investigate structural changes associated with a mb 4.9 earthquake in the region of the Saint Paul transform fault. The data have been recorded by a single broadband seismic station located at less than 200 km from the Mid-Atlantic ridge. The results of the phase auto-correlation for a 5-month period, show a strong co-seismic medium change followed by a relatively fast post-seismic recovery. This medium change is likely related to the damages caused by the earthquake’s ground shaking. The healing process (filling of the new cracks) that lasted 60 days can be decomposed in two phases, a fast recovery (70% in ~30 days) in the early post-seismic stage and a relatively slow recovery later (30% in ~30 days). In the coda wave interferometry study, we monitor temporal changes of the subsurface caused by the small intraplate earthquake swarm mentioned previously. The method was first validated with synthetics data. We were able to detect a change of 2.5% in the source position and a 15% decrease of the scatterers’ amount. Then, from the real data, we observed a rapid decorrelation of the seismic coda after the mR 3.7 seismic event. This indicates a rapid change of the subsurface in the fault’s region induced by the earthquake.
Resumo:
Radial glial cells (RGCs) in the ventricular neuroepithelium of the dorsal telencephalon are the progenitor cells for neocortical projection neurons and astrocytes. Here we showthatthe adherens junction proteins afadin and CDH2 are criticalforthe control of cell proliferation in the dorsal telencephalon and for the formation of its normal laminar structure. Inactivation of afadin or CDH2 in the dorsal telenceph-alon leads to a phenotype resembling subcortical band heterotopia, also known as “double cortex,” a brain malformation in which heterotopic gray matter is interposed between zones of white matter. Adherens junctions between RGCs are disrupted in the mutants, progenitor cells are widely dispersed throughout the developing neocortex, and their proliferation is dramatically increased. Major subtypes of neocortical projection neurons are generated, but their integration into cell layers is disrupted. Our findings suggest that defects in adherens junctions components in mice massively affects progenitor cell proliferation and leads to a double cortex-like phenotype.
Resumo:
The thalamus plays an important role in the sensorial processing information, in this particular case, the visual information. Several neuronal groups have been characterized as conductors and processors of important sensorial information to the cerebral cortex. The lateral geniculate complex is one to them, and appears as a group very studied once it is responsible, in almost all totality, for the processing of visual information. Among the nuclei that constitute the lateral geniculate complex we highlight the dorsal lateral geniculate nucleus of the thalamus (DLG), the main thalamic relay for the visual information. This nucleus is located rostral and lateral to medial geniculate nucleus and ventral to thalamic pulvinar nucleus in most of the mammals. In the primates humans and non-humans, it presents as a laminate structure, arranged in layers, when observed in coronal sections. The objective of this work was to do a mapping of the retinal projections and a citoarchictetonic and neurochemical characterization of DLG in the marmoset (Callithrix jacchus), a New World primate. The retinal projections were traced by anterograde transport of subunit b of cholera toxin (CTb), the citoarchicteture was described by Nissl method, and to neurochemical characterization immunohistochemicals technical were used to examine the main neurotransmitters and neuroatives substances present in this neural center. In DGL of marmoset thalamus, in coronal sections labeled by Nissl method, was possible to visualize the division of this nucleus in four layers divided in two portions: magnocellular and parvocellular. The retinal projections were present being visualized fibers and terminals immunorreactives to CTb (IR-CTb) in the DLG ipsilateral and contralateral. And through the immunohistochemicals techniques was observed that DLG contain cells, fibers and/or terminals immunoreactives against neuronal nuclear protein, subunits of AMPA 15 glutamate receptors (GluR1, GluR2/3, GluR4), choline acetyltransferase, serotonin, glutamic acid decarboxylase, binding calcium proteins (calbindin, parvalbumin and calretinin), vasopressin, vasoactive intestinal polypeptide, and an astrocyte protein, glial fibrillary acidic protein.
Resumo:
The structural framework of the sedimentary basins usually plays an important role in oil prospects and reservoirs. Geometry, interconectivity and density of the brittle features developed during basin evolution could change the permo-porous character of the rocks involved in generation, migration and entrapment of fluid flow. Once the structural characterization of the reservois using only sub-surface data is not an easy task, many studies are focused in analogous outcrops trying to understand the main processes by which brittle tectonic is archieved. In the Santana do Acaraú region (Ceará state, NE Brazil) a pack of conglomeratic sandstone (here named CAC) has its geometry controlled mainly by NE trending faults, interpreted as related to reactivation of a precambrian Sobral Pedro II Lineament (LSP-II). Geological mapping of the CAC showed a major NE-SW trending synform developed before its complete lithification during a dextral transpression. This region was then selected to be studied in details in order of constrain the cretaceous deformation and so help the understanding the deformation of the basins along the brazilian equatorial margin. In order to characterize the brittle deformation in different scales, I study some attributes of the fractures and faults such as orientation, density, kinematic, opening, etc., through scanlines in satellite images, outcrops and thin sections. The study of the satellite images showed three main directions of the macrostructures, N-S, NE-SW and E-W. Two of theses features (N-S and E-W) are in aggreement with previous geophysical data. A bimodal pattern of the lineaments in the CAC´s basement rocks has been evidenciated by the NE and NW sets of structures obtained in the meso and microscale data. Besides the main dextral transpression two others later events, developed when the sediments were complety lithified, were recognized in the area. The interplay among theses events is responsible for the compartimentation of the CAC in several blocks along within some structural elements display diferents orientations. Based on the variation in the S0 orientation, the CAC can be subdivided in several domains. Dispite of the variations in orientations of the fractures/faults in the diferents domains, theses features, in the meso and microscopic scale, are concentrated in two sets (based on their trend) in all domains which show similar orientation of the S0 surface. Thus the S0 orientation was used to group the domains in three major sets: i) The first one is that where S0 is E-W oriented: the fractures are oriented mainly NE with the development of a secondary NW trending; ii) S0 trending NE: the fractures are concentrated mainly along the trend NW with a secondary concentration along the NE trend; iii) The third set, where S0 is NS the main fractures are NE and the secondary concentration is NW. Another analized parameter was the fault/fracture length. This attribute was studied in diferent scales trying to detect the upscale relationship. A terrain digital model (TDM) was built with the brittlel elements supperposed. This model enhanced a 3D visualization of the area as well as the spatial distribution of the fault/fractures. Finally, I believe that a better undertanding of the brittle tectonic affecting both CAC and its nearby basement will help the future interpretations of the tectonic envolved in the development of the sedimentary basins of the brazilian equatorial margin and their oil reservoirs and prospects, as for instance the Xaréu field in the Ceará basin, which subsurface data could be correlated with the surface ones
Resumo:
The Portalegre shear zone (ZCPa), which is located in the Rio Grande do Norte and Paraíba states (Northeastern Brazil), is na important right-lateral, northeast-trending lineament formed during the Brazilian Orogenic Cicle). The ZCPa experienced na important brittle reactivation from the Mesozoic until the present. This reactivation led to the formation of the Gangorra, Pau dos Ferros, Coronel João Pessoa, Icozinho and Rio do Peixe basins. The reactivation northern parto f the ZCPa that marks the boundary of the Potiguar Basin is denominated Carnaubais Fault. Several fracture patterns were mapped along the ZCPa. Samples were collected in Neoproterozoic granite outcrops, along the ZCPa. These samples yielded AFT ages from 86±13 to 376±57 Ma, and the mean track length from 10.9±0.8 to 12.9±1.5 mm. Samples from the East block yielded mean ages of 103 Ma, mean track lengtn 12,1mm, and mean altitude 250m, whereas samples from West block yielded mean ages of 150 Ma, which reach 345 Ma and 220 Ma in the Pau dos Ferros and Coronel João Pessoa basins, respectively. Thermal history models were sorted out for each crustal block. Samples from West block recorded a thermal history from Carboniferous Period until the Permiano, when the block experienced gradual uplift until the Cretaceous, when it underwent downfaulting and heating until the Tertiary, and it eventually experienced a rapid uplift movement until recent times. Samples from the East block presented the same cooling and heating events, but at they occurred different times. The East block thermal record started ~140 Ma, when this block experienced cooling until ~75 Ma. Both blocks show a denundacion/erosional history more similar in the Tertiary. The AFT data indicate an important tectonic event ~140 Ma, when the West block experienced downfaulting and the East block experienced uplift. This tectonic process led to the generation of several sedimentary basins in the region, including the Potiguar basin. This tectonic event is also interpreted as a rift process caused by an E-W-trending extension. It the Tertiary, some heating events can be tentatively attributed to the macau volcanic event
Resumo:
Ethanol-dependent individuals who reduce or discontinue its use may present Alcohol Withdrawal Syndrome, which is characterized by unpleasant signs and symptoms, such as anxiety, that may trigger relapses. Ethanol, a psychotropic drug, is able to promote behavioral and neurophysiological changes, acting on different neurotransmitter systems, including the serotonergic, which has also been directly associated with aversive states, including anxiety. This study aimed to investigate the participation of type 7 serotonin receptor (5-HT7) of the dorsal periaqueductal gray (DPAG) on basal experimental anxiety and that caused by ethanol withdrawal. For this, 75-100 days old Wistar rats were subjected to two experiments. On the first one, animals underwent stereotactic surgery for implantation of guide cannulas used for administration of the drug directly into the DPAG. After seven days, the animals received doses of 2.5; 5 and 10 nmols of type 7 receptor antagonist SB269970 (SB) or vehicle intra-DPAG and, ten minutes after, they were exposed to elevated plus maze (EPM). In the following day, the animals were submitted to the same treatment and tested in the open field (OF). In the second experiment, animals received increasing concentrations (2%, 4%, 6%) of ethanol as the only source of liquid diet or water (control group), both with free access to chow. Seventy two hours and ninety six hours after the ethanol withdrawal, animals received SB (2.5 and 5.0 nmols) intraDPAG ten minutes before the test in the LCE and OF, respectively. In experiment 1, the dose of antagonist 10 nmols was able of reversing the anxiety generated by EPM. In the experiment 2, ineffective SB doses on the LCE (2.5 and 5.0 nmol) were not able to reverse the anxiety caused by the ethanol withdrawal in the EPM, although the dose of 2.5 nmols of SB has reversed its hipolocomotor effect in this test. This result suggests that the 5-HT7 receptor is involved in the modulation of the basal experimental anxiety in rats, but not in the anxiety caused by ethanol withdrawal in the DPAG.
Resumo:
Ethanol withdrawn individuals present a wealth of signs and symptoms, some of them related with anxiety. To better understand brain areas involved in anxiety caused by ethanol abstinence, preclinical studies have been employing models of ethanol consumption followed by withdrawal in rodents submitted to behavioral tests of anxiety, such as the elevated plus-maze. The aim of this study was to investigate if short- or long-term ethanol withdrawal could alter both anxiety-related behaviors in the elevated plus-maze (EPM) and open field tests and the number of serotonin immunorreactive cels in the dorsal raphe nucleus, a midbrain area associated with anxiety. Female Wistar rats (90 days old) were submitted to increasing concentrations of ethanol (2% for 3 days, 4% for 3 days and 6% for 15 days) as the only source of liquid diet and the control group received water ad libitum. Both groups received food ad libitum. In the behavioral experiments, on 21st day of consumption, ethanol was substituted by water (withdrawal) and 72 h or 21 days after withdrawal animals were submitted to the EPM, where it was evaluated the percentage of time and entries in the open arms and the entries in the enclosed arms during 5 minutes. Twenty and four hours after testing in the EPM, animals were submitted to the open field test for 15 minutes, where the distance traveled by the animals was observed along this period. During the first 5 minutes, the distance traveled, entries and time spent in the center of the test were analyzed. In the immunohistochemistry study, animals were submitted to 21 days of consumption of ethanol followed or not by 72 hours and 21 days of withdrawal previously perfusion, brain tissue preparation and quantification of serotonin dyed cells in the dorsal and caudal portions in the dorsal raphe nucleus. Behavioral data showed that both short- and long-term ethanol withdrawals reduced the open arms exploration in the EPM. In the open field test there were no locomotor activity changes during the total 15 minutes; however, longterm ethanol withdrawal reduced the exploration in the center of the open field during the first 5 minutes. In the immunohistochemistry step, there were no differences, when short- and long-term withdrawn groups were compared with control group; nevertheless, the chronic consumption of ethanol decreased the number of serotonergic immunorreactive cells in the dorsal part of dorsal raphe nucleus. Taken together, results here obtained suggest that both short- and long-term ethanol withdrawals promoted an anxiogenic-like effect that was not related with changes in the serotonin immunorreactivity in the dorsal and caudal parts of the dorsal raphe nucleus.
Resumo:
The objective of this study was to determine the seasonal and interannual variability and calculate the trends of wind speed in NEB and then validate the mesoscale numerical model for after engage with the microscale numerical model in order to get the wind resource at some locations in the NEB. For this we use two data sets of wind speed (weather stations and anemometric towers) and two dynamic models; one of mesoscale and another of microscale. We use statistical tools to evaluate and validate the data obtained. The simulations of the dynamic mesoscale model were made using data assimilation methods (Newtonian Relaxation and Kalman filter). The main results show: (i) Five homogeneous groups of wind speed in the NEB with higher values in winter and spring and with lower in summer and fall; (ii) The interannual variability of the wind speed in some groups stood out with higher values; (iii) The large-scale circulation modified by the El Niño and La Niña intensified wind speed for the groups with higher values; (iv) The trend analysis showed more significant negative values for G3, G4 and G5 in all seasons and in the annual average; (v) The performance of dynamic mesoscale model showed smaller errors in the locations Paracuru and São João and major errors were observed in Triunfo; (vi) Application of the Kalman filter significantly reduce the systematic errors shown in the simulations of the dynamic mesoscale model; (vii) The wind resource indicate that Paracuru and Triunfo are favorable areas for the generation of energy, and the coupling technique after validation showed better results for Paracuru. We conclude that the objective was achieved, making it possible to identify trends in homogeneous groups of wind behavior, and to evaluate the quality of both simulations with the dynamic model of mesoscale and microscale to answer questions as necessary before planning research projects in Wind-Energy area in the NEB
Resumo:
Radial glial cells (RGCs) in the ventricular neuroepithelium of the dorsal telencephalon are the progenitor cells for neocortical projection neurons and astrocytes. Here we showthatthe adherens junction proteins afadin and CDH2 are criticalforthe control of cell proliferation in the dorsal telencephalon and for the formation of its normal laminar structure. Inactivation of afadin or CDH2 in the dorsal telenceph-alon leads to a phenotype resembling subcortical band heterotopia, also known as “double cortex,” a brain malformation in which heterotopic gray matter is interposed between zones of white matter. Adherens junctions between RGCs are disrupted in the mutants, progenitor cells are widely dispersed throughout the developing neocortex, and their proliferation is dramatically increased. Major subtypes of neocortical projection neurons are generated, but their integration into cell layers is disrupted. Our findings suggest that defects in adherens junctions components in mice massively affects progenitor cell proliferation and leads to a double cortex-like phenotype.