27 resultados para Detecção e diagnóstico de falhas
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The industries are getting more and more rigorous, when security is in question, no matter is to avoid financial damages due to accidents and low productivity, or when it s related to the environment protection. It was thinking about great world accidents around the world involving aircrafts and industrial process (nuclear, petrochemical and so on) that we decided to invest in systems that could detect fault and diagnosis (FDD) them. The FDD systems can avoid eventual fault helping man on the maintenance and exchange of defective equipments. Nowadays, the issues that involve detection, isolation, diagnose and the controlling of tolerance fault are gathering strength in the academic and industrial environment. It is based on this fact, in this work, we discuss the importance of techniques that can assist in the development of systems for Fault Detection and Diagnosis (FDD) and propose a hybrid method for FDD in dynamic systems. We present a brief history to contextualize the techniques used in working environments. The detection of fault in the proposed system is based on state observers in conjunction with other statistical techniques. The principal idea is to use the observer himself, in addition to serving as an analytical redundancy, in allowing the creation of a residue. This residue is used in FDD. A signature database assists in the identification of system faults, which based on the signatures derived from trend analysis of the residue signal and its difference, performs the classification of the faults based purely on a decision tree. This FDD system is tested and validated in two plants: a simulated plant with coupled tanks and didactic plant with industrial instrumentation. All collected results of those tests will be discussed
Resumo:
In a real process, all used resources, whether physical or developed in software, are subject to interruptions or operational commitments. However, in situations in which operate critical systems, any kind of problem may bring big consequences. Knowing this, this paper aims to develop a system capable to detect the presence and indicate the types of failures that may occur in a process. For implementing and testing the proposed methodology, a coupled tank system was used as a study model case. The system should be developed to generate a set of signals that notify the process operator and that may be post-processed, enabling changes in control strategy or control parameters. Due to the damage risks involved with sensors, actuators and amplifiers of the real plant, the data set of the faults will be computationally generated and the results collected from numerical simulations of the process model. The system will be composed by structures with Artificial Neural Networks, trained in offline mode using Matlab®
Resumo:
Induction motors are one of the most important equipment of modern industry. However, in many situations, are subject to inadequate conditions as high temperatures and pressures, load variations and constant vibrations, for example. Such conditions, leaving them more susceptible to failures, either external or internal in nature, unwanted in the industrial process. In this context, predictive maintenance plays an important role, where the detection and diagnosis of faults in a timely manner enables the increase of time of the engine and the possibiity of reducing costs, caused mainly by stopping the production and corrective maintenance the motor itself. In this juncture, this work proposes the design of a system that is able to detect and diagnose faults in induction motors, from the collection of electrical line voltage and current, and also the measurement of engine speed. This information will use as input to a fuzzy inference system based on rules that find and classify a failure from the variation of thess quantities
Resumo:
In this work, we propose a two-stage algorithm for real-time fault detection and identification of industrial plants. Our proposal is based on the analysis of selected features using recursive density estimation and a new evolving classifier algorithm. More specifically, the proposed approach for the detection stage is based on the concept of density in the data space, which is not the same as probability density function, but is a very useful measure for abnormality/outliers detection. This density can be expressed by a Cauchy function and can be calculated recursively, which makes it memory and computational power efficient and, therefore, suitable for on-line applications. The identification/diagnosis stage is based on a self-developing (evolving) fuzzy rule-based classifier system proposed in this work, called AutoClass. An important property of AutoClass is that it can start learning from scratch". Not only do the fuzzy rules not need to be prespecified, but neither do the number of classes for AutoClass (the number may grow, with new class labels being added by the on-line learning process), in a fully unsupervised manner. In the event that an initial rule base exists, AutoClass can evolve/develop it further based on the newly arrived faulty state data. In order to validate our proposal, we present experimental results from a level control didactic process, where control and error signals are used as features for the fault detection and identification systems, but the approach is generic and the number of features can be significant due to the computationally lean methodology, since covariance or more complex calculations, as well as storage of old data, are not required. The obtained results are significantly better than the traditional approaches used for comparison
Resumo:
The detection and diagnosis of faults, ie., find out how , where and why failures occur is an important area of study since man came to be replaced by machines. However, no technique studied to date can solve definitively the problem. Differences in dynamic systems, whether linear, nonlinear, variant or invariant in time, with physical or analytical redundancy, hamper research in order to obtain a unique solution . In this paper, a technique for fault detection and diagnosis (FDD) will be presented in dynamic systems using state observers in conjunction with other tools in order to create a hybrid FDD. A modified state observer is used to create a residue that allows also the detection and diagnosis of faults. A bank of faults signatures will be created using statistical tools and finally an approach using mean squared error ( MSE ) will assist in the study of the behavior of fault diagnosis even in the presence of noise . This methodology is then applied to an educational plant with coupled tanks and other with industrial instrumentation to validate the system.
Sistema de detecção e isolamento de falhas em sistemas dinâmicos baseado em identificação paramétrica
Resumo:
The present research aims at contributing to the area of detection and diagnosis of failure through the proposal of a new system architecture of detection and isolation of failures (FDI, Fault Detection and Isolation). The proposed architecture presents innovations related to the way the physical values monitored are linked to the FDI system and, as a consequence, the way the failures are detected, isolated and classified. A search for mathematical tools able to satisfy the objectives of the proposed architecture has pointed at the use of the Kalman Filter and its derivatives EKF (Extended Kalman Filter) and UKF (Unscented Kalman Filter). The use of the first one is efficient when the monitored process presents a linear relation among its physical values to be monitored and its out-put. The other two are proficient in case this dynamics is no-linear. After that, a short comparative of features and abilities in the context of failure detection concludes that the UFK system is a better alternative than the EKF one to compose the architecture of the FDI system proposed in case of processes of no-linear dynamics. The results shown in the end of the research refer to the linear and no-linear industrial processes. The efficiency of the proposed architecture may be observed since it has been applied to simulated and real processes. To conclude, the contributions of this thesis are found in the end of the text
Resumo:
This master dissertation presents the development of a fault detection and isolation system based in neural network. The system is composed of two parts: an identification subsystem and a classification subsystem. Both of the subsystems use neural network techniques with multilayer perceptron training algorithm. Two approaches for identifica-tion stage were analyzed. The fault classifier uses only residue signals from the identification subsystem. To validate the proposal we have done simulation and real experiments in a level system with two water reservoirs. Several faults were generated above this plant and the proposed fault detection system presented very acceptable behavior. In the end of this work we highlight the main difficulties found in real tests that do not exist when it works only with simulation environments
Resumo:
Equipment maintenance is the major cost factor in industrial plants, it is very important the development of fault predict techniques. Three-phase induction motors are key electrical equipments used in industrial applications mainly because presents low cost and large robustness, however, it isn t protected from other fault types such as shorted winding and broken bars. Several acquisition ways, processing and signal analysis are applied to improve its diagnosis. More efficient techniques use current sensors and its signature analysis. In this dissertation, starting of these sensors, it is to make signal analysis through Park s vector that provides a good visualization capability. Faults data acquisition is an arduous task; in this way, it is developed a methodology for data base construction. Park s transformer is applied into stationary reference for machine modeling of the machine s differential equations solution. Faults detection needs a detailed analysis of variables and its influences that becomes the diagnosis more complex. The tasks of pattern recognition allow that systems are automatically generated, based in patterns and data concepts, in the majority cases undetectable for specialists, helping decision tasks. Classifiers algorithms with diverse learning paradigms: k-Neighborhood, Neural Networks, Decision Trees and Naïves Bayes are used to patterns recognition of machines faults. Multi-classifier systems are used to improve classification errors. It inspected the algorithms homogeneous: Bagging and Boosting and heterogeneous: Vote, Stacking and Stacking C. Results present the effectiveness of constructed model to faults modeling, such as the possibility of using multi-classifiers algorithm on faults classification
Resumo:
This master dissertation presents the study and implementation of inteligent algorithms to monitor the measurement of sensors involved in natural gas custody transfer processes. To create these algoritmhs Artificial Neural Networks are investigated because they have some particular properties, such as: learning, adaptation, prediction. A neural predictor is developed to reproduce the sensor output dynamic behavior, in such a way that its output is compared to the real sensor output. A recurrent neural network is used for this purpose, because of its ability to deal with dynamic information. The real sensor output and the estimated predictor output work as the basis for the creation of possible sensor fault detection and diagnosis strategies. Two competitive neural network architectures are investigated and their capabilities are used to classify different kinds of faults. The prediction algorithm and the fault detection classification strategies, as well as the obtained results, are presented
Resumo:
Web services are software units that allow access to one or more resources, supporting the deployment of business processes in the Web. They use well-defined interfaces, using web standard protocols, making possible the communication between entities implemented on different platforms. Due to these features, Web services can be integrated as services compositions to form more robust loose coupling applications. Web services are subject to failures, unwanted situations that may compromise the business process partially or completely. Failures can occur both in the design of compositions as in the execution of compositions. As a result, it is essential to create mechanisms to make the implementation of service compositions more robust and to treat failures. Specifically, we propose the support for fault recovery in service compositions described in PEWS language and executed on PEWS-AM, an graph reduction machine. To support recovery failure on PEWS-AM, we extend the PEWS language specification and adapted the rules of translation and reduction of graphs for this machine. These contributions were made both in the model of abstract machine as at the implementation level
Resumo:
This master dissertation presents the study and implementation of inteligent algorithms to monitor the measurement of sensors involved in natural gas custody transfer processes. To create these algoritmhs Artificial Neural Networks are investigated because they have some particular properties, such as: learning, adaptation, prediction. A neural predictor is developed to reproduce the sensor output dynamic behavior, in such a way that its output is compared to the real sensor output. A recurrent neural network is used for this purpose, because of its ability to deal with dynamic information. The real sensor output and the estimated predictor output work as the basis for the creation of possible sensor fault detection and diagnosis strategies. Two competitive neural network architectures are investigated and their capabilities are used to classify different kinds of faults. The prediction algorithm and the fault detection classification strategies, as well as the obtained results, are presented
Resumo:
This work presents a diagnosis faults system (rotor, stator, and contamination) of three-phase induction motor through equivalent circuit parameters and using techniques patterns recognition. The technology fault diagnostics in engines are evolving and becoming increasingly important in the field of electrical machinery. The neural networks have the ability to classify non-linear relationships between signals through the patterns identification of signals related. It is carried out induction motor´s simulations through the program Matlab R & Simulink R , and produced some faults from modifications in the equivalent circuit parameters. A system is implemented with multiples classifying neural network two neural networks to receive these results and, after well-trained, to accomplish the identification of fault´s pattern
Resumo:
This work was motivated by the importance of conducting a study of vehicle emissions in captive fleets with diesel engine, coupled with the predictive maintenance plan. This type of maintenance includes techniques designed to meet the growing market demand to reduce maintenance costs by increasing the reliability of diagnoses, which has increased interest in automated predictive maintenance on diesel engines, preventing problems that might evolve into routine turn into serious situations, solved only with complex and costly repairs, the Reliability Centered Maintenance, will be the methodology that will make our goal is reached, beyond maintaining the vehicles regulated as fuel consumption and emissions. To Therefore, technical improvements were estimated capable of penetrating the automotive market and give the inshore fleet emission rates of opacity of the vehicles, being directly related to the conditions of the lubricating oil thus contributing to reducing maintenance costs by contributing significantly to emissions of pollutants and an improvement in the air in large cities. This criterion was adopted and implemented, em 241 buses and produced a diagnosis of possible failures by the correlation between the characterization of used lubricating oils and the analysis of opacity, with the objective of the aid the detection and solution of failures for the maintenance of sub-systems according to design criteria, and for this to be a deductive methodology to determine potential causes of failures, has been automated to implement a predictive maintenance system for this purpose was used in our study a mobile unit equipped with a opacimeter and a kit for collection and analysis of lubricating oil and the construction of the network diagnostics, we used a computer program in Microsoft Office Access 2007 platform tool is indispensable for creating a database data, this method is being used and successfully implemented in seven (7) bus companies from the city of Natal (RN) Brazil
Resumo:
In the last decades, the oil, gas and petrochemical industries have registered a series of huge accidents. Influenced by this context, companies have felt the necessity of engaging themselves in processes to protect the external environment, which can be understood as an ecological concern. In the particular case of the nuclear industry, sustainable education and training, which depend too much on the quality and applicability of the knowledge base, have been considered key points on the safely application of this energy source. As a consequence, this research was motivated by the use of the ontology concept as a tool to improve the knowledge management in a refinery, through the representation of a fuel gas sweetening plant, mixing many pieces of information associated with its normal operation mode. In terms of methodology, this research can be classified as an applied and descriptive research, where many pieces of information were analysed, classified and interpreted to create the ontology of a real plant. The DEA plant modeling was performed according to its process flow diagram, piping and instrumentation diagrams, descriptive documents of its normal operation mode, and the list of all the alarms associated to the instruments, which were complemented by a non-structured interview with a specialist in that plant operation. The ontology was verified by comparing its descriptive diagrams with the original plant documents and discussing with other members of the researchers group. All the concepts applied in this research can be expanded to represent other plants in the same refinery or even in other kind of industry. An ontology can be considered a knowledge base that, because of its formal representation nature, can be applied as one of the elements to develop tools to navigate through the plant, simulate its behavior, diagnose faults, among other possibilities
Resumo:
The 1988 Federal Constitution of Brazil by presenting the catalog of fundamental rights and guarantees (Title II) provides expressly that such rights reach the social, economic and cultural rights (art. 6 of CF/88) as a means not only to ratify the civil and political rights, but also to make them effective and practical in the life of the Brazilian people, particularly in the prediction of immediate application of those rights and guarantees. In this sense, health goes through condition of universal right and duty of the State, which should be guaranteed by social and economic policies aimed at reducing the risk of disease and other hazards, in addition to ensuring universal and equal access to actions and services for its promotion, protection and recovery (Article 196 by CF/88). Achieving the purposes aimed by the constituent to the area of health is the great challenge that requires the Health System and its managers. To this end, several policies have been structured in an attempt to establish actions and services for the promotion, protection and rehabilitation of diseases and disorders to health. In the mid-90s, in order to meet the guidelines and principles established by the SUS, it was established the Política Nacional de Atenção Oncológica PNAO, in an attempt to sketch out a public policy that sought to achieve maximum efficiency and to be able to give answers integral to effective care for patients with cancer, with emphasis on prevention, early detection, diagnosis, treatment, rehabilitation and palliative care. However, many lawsuits have been proposed with applications for anticancer drugs. These actions have become very complex, both in the procedural aspects and in all material ones, especially due to the highcost drugs more requested these demands, as well as need to be buoyed by the scientific evidence of these drugs in relation to proposed treatments. The jurisprudence in this area, although the orientations as outlined by the Parliament of Supreme Court is still in the process of construction, this study is thus placed in the perspective of contributing to the effective and efficient adjudication in these actions, with focus on achieving the fundamental social rights. Given this scenario and using research explanatory literature and documents were examined 108 lawsuits pending in the Federal Court in Rio Grande do Norte, trying to identify the organs of the Judiciary behave in the face of lawsuits that seeking oncology drugs (or antineoplastic), seeking to reconcile the principles and constitutional laws and infra constitutional involving the theme in an attempt to contribute to a rationalization of this judicial practice. Finally, considering the Rational Use of health demands and the idea of belonging to the Brazilian people SUS, it is concluded that the judicial power requires ballast parameters of their decisions on evidence-based medicine, aligning these decisions housing constitutional principles that the right to health and the scientific conclusions of efficacy, effectiveness and efficiency in oncology drugs, when compared to the treatments offered by SUS