9 resultados para Descritores de fourier

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The skin cancer is the most common of all cancers and the increase of its incidence must, in part, caused by the behavior of the people in relation to the exposition to the sun. In Brazil, the non-melanoma skin cancer is the most incident in the majority of the regions. The dermatoscopy and videodermatoscopy are the main types of examinations for the diagnosis of dermatological illnesses of the skin. The field that involves the use of computational tools to help or follow medical diagnosis in dermatological injuries is seen as very recent. Some methods had been proposed for automatic classification of pathology of the skin using images. The present work has the objective to present a new intelligent methodology for analysis and classification of skin cancer images, based on the techniques of digital processing of images for extraction of color characteristics, forms and texture, using Wavelet Packet Transform (WPT) and learning techniques called Support Vector Machine (SVM). The Wavelet Packet Transform is applied for extraction of texture characteristics in the images. The WPT consists of a set of base functions that represents the image in different bands of frequency, each one with distinct resolutions corresponding to each scale. Moreover, the characteristics of color of the injury are also computed that are dependants of a visual context, influenced for the existing colors in its surround, and the attributes of form through the Fourier describers. The Support Vector Machine is used for the classification task, which is based on the minimization principles of the structural risk, coming from the statistical learning theory. The SVM has the objective to construct optimum hyperplanes that represent the separation between classes. The generated hyperplane is determined by a subset of the classes, called support vectors. For the used database in this work, the results had revealed a good performance getting a global rightness of 92,73% for melanoma, and 86% for non-melanoma and benign injuries. The extracted describers and the SVM classifier became a method capable to recognize and to classify the analyzed skin injuries

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The precision and the fast identification of abnormalities of bottom hole are essential to prevent damage and increase production in the oil industry. This work presents a study about a new automatic approach to the detection and the classification of operation mode in the Sucker-rod Pumping through dynamometric cards of bottom hole. The main idea is the recognition of the well production status through the image processing of the bottom s hole dynamometric card (Boundary Descriptors) and statistics and similarity mathematics tools, like Fourier Descriptor, Principal Components Analysis (PCA) and Euclidean Distance. In order to validate the proposal, the Sucker-Rod Pumping system real data are used

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The great amount of data generated as the result of the automation and process supervision in industry implies in two problems: a big demand of storage in discs and the difficulty in streaming this data through a telecommunications link. The lossy data compression algorithms were born in the 90’s with the goal of solving these problems and, by consequence, industries started to use those algorithms in industrial supervision systems to compress data in real time. These algorithms were projected to eliminate redundant and undesired information in a efficient and simple way. However, those algorithms parameters must be set for each process variable, becoming impracticable to configure this parameters for each variable in case of systems that monitor thousands of them. In that context, this paper propose the algorithm Adaptive Swinging Door Trending that consists in a adaptation of the Swinging Door Trending, as this main parameters are adjusted dynamically by the analysis of the signal tendencies in real time. It’s also proposed a comparative analysis of performance in lossy data compression algorithms applied on time series process variables and dynamometer cards. The algorithms used to compare were the piecewise linear and the transforms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Several are the areas in which digital images are used in solving day-to-day problems. In medicine the use of computer systems have improved the diagnosis and medical interpretations. In dentistry it’s not different, increasingly procedures assisted by computers have support dentists in their tasks. Set in this context, an area of dentistry known as public oral health is responsible for diagnosis and oral health treatment of a population. To this end, oral visual inspections are held in order to obtain oral health status information of a given population. From this collection of information, also known as epidemiological survey, the dentist can plan and evaluate taken actions for the different problems identified. This procedure has limiting factors, such as a limited number of qualified professionals to perform these tasks, different diagnoses interpretations among other factors. Given this context came the ideia of using intelligent systems techniques in supporting carrying out these tasks. Thus, it was proposed in this paper the development of an intelligent system able to segment, count and classify teeth from occlusal intraoral digital photographic images. The proposed system makes combined use of machine learning techniques and digital image processing. We first carried out a color-based segmentation on regions of interest, teeth and non teeth, in the images through the use of Support Vector Machine. After identifying these regions were used techniques based on morphological operators such as erosion and transformed watershed for counting and detecting the boundaries of the teeth, respectively. With the border detection of teeth was possible to calculate the Fourier descriptors for their shape and the position descriptors. Then the teeth were classified according to their types through the use of the SVM from the method one-against-all used in multiclass problem. The multiclass classification problem has been approached in two different ways. In the first approach we have considered three class types: molar, premolar and non teeth, while the second approach were considered five class types: molar, premolar, canine, incisor and non teeth. The system presented a satisfactory performance in the segmenting, counting and classification of teeth present in the images.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Several are the areas in which digital images are used in solving day-to-day problems. In medicine the use of computer systems have improved the diagnosis and medical interpretations. In dentistry it’s not different, increasingly procedures assisted by computers have support dentists in their tasks. Set in this context, an area of dentistry known as public oral health is responsible for diagnosis and oral health treatment of a population. To this end, oral visual inspections are held in order to obtain oral health status information of a given population. From this collection of information, also known as epidemiological survey, the dentist can plan and evaluate taken actions for the different problems identified. This procedure has limiting factors, such as a limited number of qualified professionals to perform these tasks, different diagnoses interpretations among other factors. Given this context came the ideia of using intelligent systems techniques in supporting carrying out these tasks. Thus, it was proposed in this paper the development of an intelligent system able to segment, count and classify teeth from occlusal intraoral digital photographic images. The proposed system makes combined use of machine learning techniques and digital image processing. We first carried out a color-based segmentation on regions of interest, teeth and non teeth, in the images through the use of Support Vector Machine. After identifying these regions were used techniques based on morphological operators such as erosion and transformed watershed for counting and detecting the boundaries of the teeth, respectively. With the border detection of teeth was possible to calculate the Fourier descriptors for their shape and the position descriptors. Then the teeth were classified according to their types through the use of the SVM from the method one-against-all used in multiclass problem. The multiclass classification problem has been approached in two different ways. In the first approach we have considered three class types: molar, premolar and non teeth, while the second approach were considered five class types: molar, premolar, canine, incisor and non teeth. The system presented a satisfactory performance in the segmenting, counting and classification of teeth present in the images.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the rapid growth of databases of various types (text, multimedia, etc..), There exist a need to propose methods for ordering, access and retrieve data in a simple and fast way. The images databases, in addition to these needs, require a representation of the images so that the semantic content characteristics are considered. Accordingly, several proposals such as the textual annotations based retrieval has been made. In the annotations approach, the recovery is based on the comparison between the textual description that a user can make of images and descriptions of the images stored in database. Among its drawbacks, it is noted that the textual description is very dependent on the observer, in addition to the computational effort required to describe all the images in database. Another approach is the content based image retrieval - CBIR, where each image is represented by low-level features such as: color, shape, texture, etc. In this sense, the results in the area of CBIR has been very promising. However, the representation of the images semantic by low-level features is an open problem. New algorithms for the extraction of features as well as new methods of indexing have been proposed in the literature. However, these algorithms become increasingly complex. So, doing an analysis, it is natural to ask whether there is a relationship between semantics and low-level features extracted in an image? and if there is a relationship, which descriptors better represent the semantic? which leads us to a new question: how to use descriptors to represent the content of the images?. The work presented in this thesis, proposes a method to analyze the relationship between low-level descriptors and semantics in an attempt to answer the questions before. Still, it was observed that there are three possibilities of indexing images: Using composed characteristic vectors, using parallel and independent index structures (for each descriptor or set of them) and using characteristic vectors sorted in sequential order. Thus, the first two forms have been widely studied and applied in literature, but there were no records of the third way has even been explored. So this thesis also proposes to index using a sequential structure of descriptors and also the order of these descriptors should be based on the relationship that exists between each descriptor and semantics of the users. Finally, the proposed index in this thesis revealed better than the traditional approachs and yet, was showed experimentally that the order in this sequence is important and there is a direct relationship between this order and the relationship of low-level descriptors with the semantics of the users

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the oil prospection research seismic data are usually irregular and sparsely sampled along the spatial coordinates due to obstacles in placement of geophones. Fourier methods provide a way to make the regularization of seismic data which are efficient if the input data is sampled on a regular grid. However, when these methods are applied to a set of irregularly sampled data, the orthogonality among the Fourier components is broken and the energy of a Fourier component may "leak" to other components, a phenomenon called "spectral leakage". The objective of this research is to study the spectral representation of irregularly sampled data method. In particular, it will be presented the basic structure of representation of the NDFT (nonuniform discrete Fourier transform), study their properties and demonstrate its potential in the processing of the seismic signal. In this way we study the FFT (fast Fourier transform) and the NFFT (nonuniform fast Fourier transform) which rapidly calculate the DFT (discrete Fourier transform) and NDFT. We compare the recovery of the signal using the FFT, DFT and NFFT. We approach the interpolation of seismic trace using the ALFT (antileakage Fourier transform) to overcome the problem of spectral leakage caused by uneven sampling. Applications to synthetic and real data showed that ALFT method works well on complex geology seismic data and suffers little with irregular spatial sampling of the data and edge effects, in addition it is robust and stable with noisy data. However, it is not as efficient as the FFT and its reconstruction is not as good in the case of irregular filling with large holes in the acquisition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the oil prospection research seismic data are usually irregular and sparsely sampled along the spatial coordinates due to obstacles in placement of geophones. Fourier methods provide a way to make the regularization of seismic data which are efficient if the input data is sampled on a regular grid. However, when these methods are applied to a set of irregularly sampled data, the orthogonality among the Fourier components is broken and the energy of a Fourier component may "leak" to other components, a phenomenon called "spectral leakage". The objective of this research is to study the spectral representation of irregularly sampled data method. In particular, it will be presented the basic structure of representation of the NDFT (nonuniform discrete Fourier transform), study their properties and demonstrate its potential in the processing of the seismic signal. In this way we study the FFT (fast Fourier transform) and the NFFT (nonuniform fast Fourier transform) which rapidly calculate the DFT (discrete Fourier transform) and NDFT. We compare the recovery of the signal using the FFT, DFT and NFFT. We approach the interpolation of seismic trace using the ALFT (antileakage Fourier transform) to overcome the problem of spectral leakage caused by uneven sampling. Applications to synthetic and real data showed that ALFT method works well on complex geology seismic data and suffers little with irregular spatial sampling of the data and edge effects, in addition it is robust and stable with noisy data. However, it is not as efficient as the FFT and its reconstruction is not as good in the case of irregular filling with large holes in the acquisition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The classifier support vector machine is used in several problems in various areas of knowledge. Basically the method used in this classier is to end the hyperplane that maximizes the distance between the groups, to increase the generalization of the classifier. In this work, we treated some problems of binary classification of data obtained by electroencephalography (EEG) and electromyography (EMG) using Support Vector Machine with some complementary techniques, such as: Principal Component Analysis to identify the active regions of the brain, the periodogram method which is obtained by Fourier analysis to help discriminate between groups and Simple Moving Average to eliminate some of the existing noise in the data. It was developed two functions in the software R, for the realization of training tasks and classification. Also, it was proposed two weights systems and a summarized measure to help on deciding in classification of groups. The application of these techniques, weights and the summarized measure in the classier, showed quite satisfactory results, where the best results were an average rate of 95.31% to visual stimuli data, 100% of correct classification for epilepsy data and rates of 91.22% and 96.89% to object motion data for two subjects.