19 resultados para Deposição por plasma

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The technique of plasma nitriding by the cathode cage mainly stands out for its ability to produce uniform layers, even on parts with complex geometries. In this study, it was investigated the efficiency of this technique for obtaining duplex surface, when used, simultaneously, to nitriding treatment and thin film deposition at temperatures below 500°C. For this, were used samples of AISI 41 0 Martensitic Stainless Steel and performed plasma treatment, combining nitriding and deposition of thin films of Ti and/or TiN in a plasma atmosphere containing N2-H2. It was used a cathodic cage of titanium pure grade II, cylindrical with 70 mm diameter and 34 mm height. Samples were treated at temperature 420ºC for 2 and 12 hours in different working pressures. Optical Microscopy (OM), Scanning Electron Microscopy (SEM) with micro-analysis by Energy Dispersive Spectroscopy (EDS), X-Ray Diffraction (XRD), Atomic Force Microscopy (AFM) and analysis of Vickers Microhardness were used to investigate coating properties such as homogeneity and surface topography, chemical composition, layer thickness, crystalline phase, roughness and surface microhardness. The results showed there is a direct proportionality between the presence of H2 in plasma atmosphere and the quantity of titanium in surface chemical composition. It was also observed that the plasma treatment at lowpressure is more effective in formation of TiN thin film

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, it has been investigated the influence of silver film deposition onto 100% polyester woven and non-woven, on the survival of Escherichia coli and Staphylococcus aureus in contact with these surfaces. The treatment was performedin a chamber containing the working gas at low pressure (~ 10-2 mbar). Some process parameters such as as voltage: 470 V; pressure: 10-2 mbar; current : 0.40 A and gas flow: 6 and 10 cm3/min were kept constant. For the treatments with purêargon plasma using a flow of 6 and 10 cm3/min, different treatment times were evaluated, such as, 10 , 20, 30, 40, 50 and 60 minutes. Contact angle (sessile drop), measurements were used to determine the surface tension of the treated fabrics and its influence on the bacteria grow as weel as the possibilities of a biofilm formation. The formation of a silver film, as well as the amount of this element was verified byEDX technique. The topography was observed through scanning electron microscopy (SEM) to determine the size of silver grains formed on the surfaces of the fabric and assess homogeneity of treatment. The X-ray diffraction (XRD) was used to analyze the structure of silver film deposition. The woven fabric treatments enabled the formation of silver particulate films with particle size larger than the non-woven fabrics. With respect to bacterial growth, all fabrics were shown to be bactericidal for Staphylococcus aureus (S. aureus), while for the Escherichia coli (E. coli), the best results were found for the non-woven fabric (TNT) treated with a flow of 10 cm3/min to both bacteria

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The technique of plasma nitriding by the cathode cage mainly stands out for its ability to produce uniform layers, even on parts with complex geometries. In this study, it was investigated the efficiency of this technique for obtaining duplex surface, when used, simultaneously, to nitriding treatment and thin film deposition at temperatures below 500°C. For this, were used samples of AISI 41 0 Martensitic Stainless Steel and performed plasma treatment, combining nitriding and deposition of thin films of Ti and/or TiN in a plasma atmosphere containing N2-H2. It was used a cathodic cage of titanium pure grade II, cylindrical with 70 mm diameter and 34 mm height. Samples were treated at temperature 420ºC for 2 and 12 hours in different working pressures. Optical Microscopy (OM), Scanning Electron Microscopy (SEM) with micro-analysis by Energy Dispersive Spectroscopy (EDS), X-Ray Diffraction (XRD), Atomic Force Microscopy (AFM) and analysis of Vickers Microhardness were used to investigate coating properties such as homogeneity and surface topography, chemical composition, layer thickness, crystalline phase, roughness and surface microhardness. The results showed there is a direct proportionality between the presence of H2 in plasma atmosphere and the quantity of titanium in surface chemical composition. It was also observed that the plasma treatment at lowpressure is more effective in formation of TiN thin film

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, it has been investigated the influence of silver film deposition onto 100% polyester woven and non-woven, on the survival of Escherichia coli and Staphylococcus aureus in contact with these surfaces. The treatment was performedin a chamber containing the working gas at low pressure (~ 10-2 mbar). Some process parameters such as as voltage: 470 V; pressure: 10-2 mbar; current : 0.40 A and gas flow: 6 and 10 cm3/min were kept constant. For the treatments with purêargon plasma using a flow of 6 and 10 cm3/min, different treatment times were evaluated, such as, 10 , 20, 30, 40, 50 and 60 minutes. Contact angle (sessile drop), measurements were used to determine the surface tension of the treated fabrics and its influence on the bacteria grow as weel as the possibilities of a biofilm formation. The formation of a silver film, as well as the amount of this element was verified byEDX technique. The topography was observed through scanning electron microscopy (SEM) to determine the size of silver grains formed on the surfaces of the fabric and assess homogeneity of treatment. The X-ray diffraction (XRD) was used to analyze the structure of silver film deposition. The woven fabric treatments enabled the formation of silver particulate films with particle size larger than the non-woven fabrics. With respect to bacterial growth, all fabrics were shown to be bactericidal for Staphylococcus aureus (S. aureus), while for the Escherichia coli (E. coli), the best results were found for the non-woven fabric (TNT) treated with a flow of 10 cm3/min to both bacteria

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Titanium nitride films were grown on glass using the Cathodic Cage Plasma Deposition technique in order to verify the influence of process parameters in optical and structural properties of the films. The plasma atmosphere used was a mixture of Ar, N2 and H2, setting the Ar and N2 gas flows at 4 and 3 sccm, respectively and H2 gas flow varied from 0, 1 to 2 sccm. The deposition process was monitored by Optical Emission Spectroscopy (OES) to investigate the influence of the active species in plasma. It was observed that increasing the H2 gas flow into the plasma the luminescent intensities associated to the species changed. In this case, the luminescence of N2 (391,4nm) species was not proportional to the increasing of the H2 gas into the reactor. Other parameters investigated were diameter and number of holes in the cage. The analysis by Grazing Incidence X-Ray Diffraction (GIXRD) confirmed that the obtained films are composed by TiN and they may have variations in the nitrogen amount into the crystal and in the crystallite size. The optical microscopy images provided information about the homogeneity of the films. The atomic force microscopy (AFM) results revealed some microstructural characteristics and surface roughness. The thickness was measured by ellipsometry. The optical properties such as transmittance and reflectance (they were measured by spectrophotometry) are very sensitive to changes in the crystal lattice of the material, chemical composition and film thicknesses. Therefore, such properties are appropriate tools for verification of this process control. In general, films obtained at 0 sccm of H2 gas flow present a higher transmittance. It can be attributed to the smaller crystalline size due to a higher amount of nitrogen in the TiN lattice. The films obtained at 1 and 2 sccm of H2 gas flow have a golden appearance and XRD pattern showed peaks characteristics of TiN with higher intensity and smaller FWHM (Full Width at Half Maximum) parameter. It suggests that the hydrogen presence in the plasma makes the films more stoichiometric and becomes it more crystalline. It was observed that with higher number of holes in the lid of the cage, close to the region between the lid and the sample and the smaller diameter of the hole, the deposited film is thicker, which is justified by the most probability of plasma species reach effectively the sample and it promotes the growth of the film

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Titanium nitride films were grown on glass using the Cathodic Cage Plasma Deposition technique in order to verify the influence of process parameters in optical and structural properties of the films. The plasma atmosphere used was a mixture of Ar, N2 and H2, setting the Ar and N2 gas flows at 4 and 3 sccm, respectively and H2 gas flow varied from 0, 1 to 2 sccm. The deposition process was monitored by Optical Emission Spectroscopy (OES) to investigate the influence of the active species in plasma. It was observed that increasing the H2 gas flow into the plasma the luminescent intensities associated to the species changed. In this case, the luminescence of N2 (391,4nm) species was not proportional to the increasing of the H2 gas into the reactor. Other parameters investigated were diameter and number of holes in the cage. The analysis by Grazing Incidence X-Ray Diffraction (GIXRD) confirmed that the obtained films are composed by TiN and they may have variations in the nitrogen amount into the crystal and in the crystallite size. The optical microscopy images provided information about the homogeneity of the films. The atomic force microscopy (AFM) results revealed some microstructural characteristics and surface roughness. The thickness was measured by ellipsometry. The optical properties such as transmittance and reflectance (they were measured by spectrophotometry) are very sensitive to changes in the crystal lattice of the material, chemical composition and film thicknesses. Therefore, such properties are appropriate tools for verification of this process control. In general, films obtained at 0 sccm of H2 gas flow present a higher transmittance. It can be attributed to the smaller crystalline size due to a higher amount of nitrogen in the TiN lattice. The films obtained at 1 and 2 sccm of H2 gas flow have a golden appearance and XRD pattern showed peaks characteristics of TiN with higher intensity and smaller FWHM (Full Width at Half Maximum) parameter. It suggests that the hydrogen presence in the plasma makes the films more stoichiometric and becomes it more crystalline. It was observed that with higher number of holes in the lid of the cage, close to the region between the lid and the sample and the smaller diameter of the hole, the deposited film is thicker, which is justified by the most probability of plasma species reach effectively the sample and it promotes the growth of the film

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In recent decades, changes in the surface properties of materials have been used to improve their tribological characteristics. However, this improvement depends on the process, treatment time and, primarily, the thickness of this surface film layer. Physical vapor deposition (PVD) of titanium nitrate (TiN) has been used to increase the surface hardness of metallic materials. Thus, the aim of the present study was to propose a numerical-experimental method to assess the film thickness (l) of TiN deposited by PVD. To reach this objective, experimental results of hardness (H) assays were combined with a numerical simulation to study the behavior of this property as a function of maximum penetration depth of the indenter (hmax) into the film/substrate conjugate. Two methodologies were adopted to determine film thickness. The first consists of the numerical results of the H x hmax curve with the experimental curve obtained by the instrumental indentation test. This methodology was used successfully in a TiN-coated titanium (Ti) conjugate. A second strategy combined the numerical results of the Hv x hmax curve with Vickers experimental hardness data (Hv). This methodology was applied to a TiN-coated M2 tool steel conjugate. The mechanical properties of the materials studied were also determined in the present study. The thicknesses results obtained for the two conjugates were compatible with their experimental data.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Plasma DC hollow cathode has been used for film deposition by sputtering with release of neutral atoms from the cathode. The DC Plasma Ar-H2 hollow cathode currently used in the industry has proven to be effective in cleaning surfaces and thin film deposition when compared to argon plasma. When we wish to avoid the effects of ion bombardment on the substrate discharge, it uses the post-discharge region. Were generated by discharge plasma of argon and hydrogen hollow cathode deposition of thin films of titanium on glass substrate. The optical emission spectroscopy was used for the post-discharge diagnosis. The films formed were analyzed by mechanical profilometry technique. It was observed that in the spectrum of the excitation lines of argon occurred species. There are variations in the rate of deposition of titanium on the glass substrate for different process parameters such as deposition time, distance and discharge working gases. It was noted an increase in intensity of the lines of argon compared with the lines of titanium. Deposition with argon and hydrogen in glass sample observed a higher rate deposition of titanium as more closer the sample was in the discharge

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ionic plasma nitriding is one of the most important plasma assisted treatment technique for surface modification, but it presents some inherent problems mainly in nitriding pieces with complex geometries. In the last four years has appeared a plasma nitriding technique, named ASPN (Active Screen Plasma Nitriding) in which the samples and the workload are surrounded by a metal screen on which the cathodic potential is applied. This new technique makes possible to obtain a perfect uniform nitrided layer apart from the shape of the samples. The present work is based on the development of a new nitriding plasma technique named CCPN (Cathodic Cage Plasma Nitriding) Patent PI 0603213-3 derived from ASPN, but utilizes the hollow cathode effect to increase the nitriding process efficiency. That technique has shown great improvement on the treatment of several types of steels under different process conditions, producing thicker and harder layers when compared with both, ASPN and ionic plasma nitriding, besides eliminating problems associated with the later technique. The best obtained results are due to the hollow cathode effect on the cage holes. Moreover, characteristic problems of ionic plasma nitriding are eliminated due to the fact that the luminescent discharge acts on the cage wall instead of on the samples surface, which remains under a floating potential. In this work the enhancement of the cathodic cage nitriding layers proprieties, under several conditions for some types of steels was investigated, besides the mechanism for nitrides deposition on glass substrate, concluding that the CCPN is both a diffusion and a deposition process at the same time

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microalloyed steels constitute a specific class of steel with low amount of carbon and microalloying elements such as Vanadium (V), Niobium (Nb) and Titanium (Ti). The development and application of microalloyed steels and steels in general are limited to the handling of powders with particles of submicron or nanometer dimensions. Therefore, this work presents an alternative in order to construction of microalloyed steels utilizing the deposition by magnetron sputtering technique as a microalloying element addiction in which Ti nanoparticles are dispersed in an iron matrix. The advantage of that technique in relation to the conventional metallurgical processes is the possibility of uniformly disperse the microalloying elements in the iron matrix. It was carried out deposition of Ti onto Fe powder in high CH4, H2, Ar plasma atmosphere, with two deposition times. After the deposition, the iron powder with nanoparticles of Ti dispersed distributed, were compacted and sintered at 1120 ° C in resistive furnace. Characterization techniques utilized in the samples of powder before and after deposition of Ti were Granulometry, Scanning Electron Microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and X-ray diffraction (DRX). In the case of sintered samples, it was carried out characterization by SEM and Vickers Microhardness assays. The results show which the deposition technique by magnetron sputtering is practicable in the dispersion of particles in iron matrix. The EDX microanalysis detected higher percentages of Ti when the deposition were carried out with the inert gas and when the deposition process was carried out with reactive gas. The presence of titanium in iron matrix was also evidenced by the results of X-ray diffraction peaks that showed shifts in the network matrix. Given these results it can be said that the technique of magnetron sputtering deposition is feasible in the dispersion of nanoparticles of iron matrix in Ti.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work reports the influence of the poly (ethylene terephthalate) textile and films surface modification by plasmas of O2 and mixtures (N2 + O2), on their physical and chemical properties. The plasma surface polymeric modification has been used for many researchs, because it does not affect the environment with toxic agents, the alterations remains only at nanometric layers and this technique shows expressive results. Then, due to its good acceptance, the treatment was carried out in a vacuum chamber. Some parameters remained constant during all treatment, such as: Voltage 470 V; Pressure 1,250 Mbar; Current: 0, 10 A and gas flow: 10 cm3/min, using oxygen plasma alternating the treatment time 10 to 60 min with an increase of 10 min to each subsequent treatment. Also, the samples were treated with a gas mixture (nitrogen + oxygen) which was varied only the gas composition from 0 to 100% leaving the treatment time remaining constant to all treatment (10 min). The plasma treatment was characterized in-situ with Optics Emission Spectroscopy (OES), and the samples was characterized by contact angle, surface tension, Through Capillary tests, Raman spectroscopy, Infrared attenuated total reflection (IR-ATR) and atomic force microscopy, scanning electronic Microscopy (SEM) and X-ray Photoelectron Spectroscopy (XPS). The results showed that oxygen treated fabrics presented high wettability, due to the hydrophilic groups incorporation onto the surface formed through spputering of carbon atoms. For the nitrogen atmosphere, there is the a film deposition of amine groups. Treatment with small oxygen concentration in the mixture with nitrogen has a higher spputered species of the samples

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The technique of surface coating using magnetron sputtering is one of the most widely used in the surface engineering, for its versatility in obtaining different films as well as in the micro / nanometric thickness control. Among the various process parameters, those related to the active species of the plasma are of the most fundamental importance in the mechanism and kinetics of deposition. In order to identify the active species of the plasma, parameters such as gas flow, pressure and density of electric power were varied during titanium coating on glass substrate. By flowing argon gas of 10, 20, 30, 40 and 50 sccm (cubic centimeters per minute) for each gas flow a sequential scan of the electric current of 0.10, 0.20, 0.30, 0.40 , 0.50 A. The maximum value of 0.50 A was chosen based both on literature data and on limitations of the equipment. The monitoring of plasma species present during the deposition was carried out in situ by the technique of optical emission spectroscopy (OES) through the spectrometer Ocean Optics USB2000 Series. For this purpose, an apparatus was developed to adapt the OES inside the plasma reactor to stay positioned closest to the target. The radiations emitted by the species were detected by an optical fiber placed behind the glass substrate and their intensities as a function of wavelength were, displayed on a monitor screen. The acquisition time for each condition of the plain parameters was related to the minima of spectral lines intensities due to the film formed on the substrate. The intensities of different emission lines of argon and titanium were then analyzed as a function of time, to determine the active species and estimate the thickness of the deposited films. After the deposition, the coated glasses thin films were characterized by optical transmittance through an infrared laser. It was found that the thickness and deposition rate determined by in situ analysis were consistent with the results obtained by laser transmittance

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metal ceramic restorations matches aesthetic and strength, and in your making occurs an interface oxide layer, wetting resulting and atomic and ionic interactions resulting between metal, oxide and porcelain. However, frequent clinical fails occurs in this restoration type, because lost homogeneous deposition oxide layer and lost interface bond. Thus, in this study, thought depositate homogeneous oxide films above Ni-Cr samples surfaces polite previously, at plasma oxide environment. Six samples was oxided at 300 and 400ºC at one hour, and two samples was oxided in a comum chamber at 900ºC, and then were characterized: optical microscopic, electronic microscopic, micro hardness, and X ray difratometry. Colors stripes were observed at six samples plasma oxided and a grey surface those comum oxided, thus like: hardness increase, and several oxides from basic metals (Ni-Cr)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The plasma nitriding has been used in industrial and technological applications for large-scale show an improvement in the mechanical, tribological, among others. In order to solve problems arising in the conventional nitriding, for example, rings constraint (edge effect) techniques have been developed with different cathodes. In this work, we studied surfaces of commercially pure titanium (Grade II), modified by plasma nitriding treatment through different settings cathodes (hollow cathode, cathodic cage with a cage and cathodic cage with two cages) varying the temperature 350, 400 and 430oC, with the goal of obtaining a surface optimization for technological applications, evaluating which treatment generally showed better results under the substrate. The samples were characterized by the techniques of testing for Atomic Force Microscopy (AFM), Raman spectroscopy, microhardness, X-ray diffraction (XRD), and a macroscopic analysis. Thus, we were able to evaluate the processing properties, such as roughness, topography, the presence of interstitial elements, hardness, homogeneity, uniformity and thickness of the nitrided layer. It was observed that all samples were exposed to nitriding modified relative to the control sample (no treatment) thus having increased surface hardness, the presence of TiN observed by XRD as per both Raman and a significant change in the roughness of the treated samples . It was found that treatment in hollow cathode, despite having the lowest value of microhardness between treated samples, was presented the lowest surface roughness, although this configuration samples suffer greater physical aggressiveness of treatment