44 resultados para Defeitos Ósseos
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Oral and facial bone defects can undertake appearance, psychosocial well-being and stomathognatic function of its patients. Over the yerars several strategies for bone defect regeneration have arised to treat these pathologies, among them the use of frozen and irradiated bone allograft. Manipulation of bone grafts it s not determined yet, and several osteotomy alternatives can be observed. The present work evaluated with a microscope the bone fragments obtained from different osteotomy methods and irrigation on rings and blocks allografts irradiated and frozen at 80° negative in a rabbit model. The study is experimental in vitro and it sample was an adult male New Zealand rabbit. The animal was sacrificed to obtain long bones, that were submitted to freezing at 80º negative and irradiated with Cobalt- 60. Then the long bones were sectioned into 24 bone pieces, divided into 4 groups: G1 (n=06) osteotomy was performed with bur No. 6 forming rings with 5 mm thickness with high-speed handpiece with manual irrigation; G2 (n=06) osteotomy was performed with bur No. 6 forming rings with 5 mm thick with surgical motor with a manual irrigation rotation 1500 rpm; GA (n=06), osteotomy with trephine using manual irrigation with saline; and GB (n=06), osteotomy with trephine using saline from peristaltic pumps of surgical motor. Five bone pieces of each group were prepared for analysis on light microscopy (LM) and one on electronic scan electronic microscopy (SEM). On the SEM analysis edges surface, presence of microcracks and Smear Layer were evaluated. Analyzing osteotomy technics on SEM was observed: increased presence of microcracks cutting with high speed; increased presence of areas covered by Smear Layer when cutting with motor implant. The irrigation analysis with SEM was observed: that the presence of microcracks does not depend on the type of irrigation; on manual irrigation, there was greater discrepancy between the cutting lines. The descriptive analysis of the osteotomy and irrigation process on LM showed: histological analysis showing the bony margins with clear tissue changed layer, composed of blackened tissue of charred appearance near to the cortical bone; on the edges of the bony part, bone fragments that were displaced during the bone cut and bone irregularities were observed. After analysis of results we can conclude: that there was greater regularity of the bone cut using high-speed handpiece than using motor implant; the cut with trephine using saline irrigated from peristaltic pumps of surgical motor showed greater homogeneity when compared with manual irrigation; charred tissue was found in all obtained bone samples, whit no significant statistically difference on the proportion of carbonization of the two analysed technics
Resumo:
The regeneration of bone defects with loss of substance remains as a therapeutic challenge in the medical field. There are basically four types of grafts: autologous, allogenic, xenogenic and isogenic. It is a consensus that autologous bone is the most suitable material for this purpose, but there are limitations to its use, especially the insufficient amount in the donor. Surveys show that the components of the extracellular matrix (ECM) are generally conserved between different species and are well tolerated even in xenogenic recipient. Thus, several studies have been conducted in the search for a replacement for autogenous bone scaffold using the technique of decellularization. To obtain these scaffolds, tissue must undergo a process of cell removal that causes minimal adverse effects on the composition, biological activity and mechanical integrity of the remaining extracellular matrix. There is not, however, a conformity among researchers about the best protocol for decellularization, since each of these treatments interfere differently in biochemical composition, ultrastructure and mechanical properties of the extracellular matrix, affecting the type of immune response to the material. Further down the arsenal of research involving decellularization bone tissue represents another obstacle to the arrival of a consensus protocol. The present study aimed to evaluate the influence of decellularization methods in the production of biological scaffolds from skeletal organs of mice, for their use for grafting. This was a laboratory study, sequenced in two distinct stages. In the first phase 12 mice hemi-calvariae were evaluated, divided into three groups (n = 4) and submitted to three different decellularization protocols (SDS [group I], trypsin [Group II], Triton X-100 [Group III]). We tried to identify the one that promotes most efficient cell removal, simultaneously to the best structural preservation of the bone extracellular matrix. Therefore, we performed quantitative analysis of the number of remaining cells and descriptive analysis of the scaffolds, made possible by microscopy. In the second stage, a study was conducted to evaluate the in vitro adhesion of mice bone marrow mesenchymal cells, cultured on these scaffolds, previously decellularized. Through manual counting of cells on scaffolds there was a complete cell removal in Group II, Group I showed a practically complete cell removal, and Group III displayed cell remains. The findings allowed us to observe a significant difference only between Groups II and III (p = 0.042). Better maintenance of the collagen structure was obtained with Triton X-100, whereas the decellularization with Trypsin was responsible for the major structural changes in the scaffolds. After culture, the adhesion of mesenchymal cells was only observed in specimens deccelularized with Trypsin. Due to the potential for total removal of cells and the ability to allow adherence of these, the protocol based on the use of Trypsin (Group II) was considered the most suitable for use in future experiments involving bone grafting decellularized scaffolds
Resumo:
The cobalt-chromium alloy is extensively used in the Odontology for the confection of metallic scaffolding in partial removable denture. During the last few years, it has been reported an increasing number of premature imperfections, with a few months of prosthesis use. The manufacture of these components is made in prosthetic laboratories and normally involves recasting, using parts of casting alloy and parts of virgin alloy. Therefore, the objective of the present study was to analyze the mechanical properties of a commercial cobalt-chromium alloy of odontological use after successive recasting, searching information to guide the dental prosthesis laboratories in the correct manipulation of the cobalt-chromium alloy in the process of casting and the possible limits of recasting in the mechanical properties of this material. Seven sample groups were confectioned, each one containing five test bodies, divided in the following way: G1: casting only with virgin alloy; G2: casting with 50% of the alloy of the G1 + 50% of virgin alloy; G3: casting with 50% of the alloy of the G2 + 50% of virgin alloy; G4: casting with 50% of the alloy of the G3 + 50% of virgin alloy; G5: 50% of alloy of the G4 + 50% of virgin alloy; G6: 50% of alloy of the G5 + 50% of virgin alloy and finally the G7, only with recasting alloy. The modifications in the mechanical behavior of the alloy were evaluated. Moreover, it was carried the micro structural characterization of the material by optic and electronic scanning microscopy, and X ray diffraction.and fluorescence looking into the correlatation of the mechanical alterations with structural modifications of the material caused by successive recasting process. Generally the results showed alterations in the fracture energy of the alloy after successive recasting, resulting mainly of the increasing presence of pores and large voids, characteristic of the casting material. Thus, the interpretation of the results showed that the material did not reveal significant differences with respect to the tensile strength or elastic limit, as a function of successive recasting. The elastic modulus increased from the third recasting cycle on, indicating that the material can be recast only twice. The fracture energy of the material decreased, as the number of recasting cycles increased. With respect to the microhardness, the statistical analyses showedno significant differences. Electronic scanning microscopy revealed the presence of imperfections and defects, resulting of the recasting process. X ray diffraction and fluorescence did not show alterations in the composition of the alloy or the formation of crystalline phases between the analyzed groups. The optical micrographs showed an increasing number of voids and porosity as the material was recast. Therefore, the general conclusion of this study is that the successive recasting of of Co-Cr alloys affects the mechanical properties of the material, consequently leading to the failure of the prosthetic work. Based on the results, the best recommendadition is that the use of the material should be limited to two recasting cycles
Resumo:
The present work deals with the synthesis of materials with perovskite structure with the intention of using them as cathodes in fuel cells SOFC type. The perovskite type materials were obtained by chemical synthesis method, using gelatin as the substituent of citric acid and ethylene glycol, and polymerizing acting as chelating agent. The materials were characterized by X-ray diffraction, thermal analysis, spectroscopy Fourier transform infrared, scanning electron microscopy with EDS, surface area determination by the BET method and Term Reduction Program, TPR. The compounds were also characterized by electrical conductivity for the purpose of observing the possible application of this material as a cathode for fuel cells, solid oxide SOFC. The method using gelatin and polymerizing chelating agent for the preparation of materials with the perovskite structure allows the synthesis of crystalline materials and homogeneous. The results demonstrate that the route adopted to obtain materials were effective. The distorted perovskite structure have obtained the type orthorhombic and rhombohedral; important for fuel cell cathodes. The presentation material properties required of a candidate cathode materials for fuel cells. XRD analysis contacted by the distortion of the structures of the synthesized materials. The analyzes show that the electrical conductivity obtained materials have the potential to act as a cell to the cathode of solid oxide fuel, allowing to infer an order of values for the electrical conductivities of perovskites where LaFeO3 < LaNiO3 < LaNi0,5Fe0,5O3. It can be concluded that the activity of these perovskites is due to the presence of structural defects generated that depend on the method of synthesis and the subsequent heat treatment
Resumo:
Metal-Ceramic (M/C) Zirconia-stainless steel interfaces have been processed through brazing techniques due to the excellent combination of properties such as high temperature stability, high corrosion resistance and good mechanical properties. However, some M/C interfaces show some defects, like porosity and cracks results in the degradation of the interfaces, leading even to its total rupture. Most of time, those defects are associated with an improper brazing parameters selection to the M/C system. In this work, ZrO2 Y-TZP and ZrO2 Mg - PSZ were joint with the stainless steel grade 304 by brazing using a eutectic silver-copper (Ag28Cu) interlayer alloy with different thermal cycles. Ceramic surfaces were previous mechanically metallized with titanium to improve adhesion of the system. The effect of temperature on the M/C interface was studied. SEM-EDS and 3 point flexural bend test were performed to evaluate morphology, chemical composition and mechanical resistance of the M/C interfaces. Lower thermal cycle temperatures produced better results of mechanical resistance, and more regular/ homogeneous reaction layers between braze alloy and metal-ceramic surfaces. Also was proved the AgCu braze alloy activation in situ by titanium
Resumo:
The general objective of this study was to contribute to the understanding of the chemical evolution of fluids that percolate through carbonate rocks of the Jandaíra Formation. The oxidation and reduction conditions in which grains, source and cement were formed was investigated using the cathodoluminescence technique (CL). The study area is located in the west part of the Potiguar Basin (Fazenda Belém field) and Rosário Ledge (Felipe Guerra municipality, State of Rio Grande do Norte, Brazil). The analysis of thin sections of carbonate rocks under CL revealed that grains (allochemical or not) and diagenetic products (micritization, dolomitization, neomorphism and cementation) exhibit since absence of luminescence the various luminescence colors (yellow, orange, red, brown, and blue) in a variety of intensities. As pure calcite shows dark blue luminescence, the occurrence of different luminescence colors in calcite crystals suggest one or more punctual crystal defects such as free electron, free space and impurity. The dyeing of thin sections with alizarin and potassium ferrocyanide revealed the absence of ferrous carbonate in the different lithotypes of Jandaíra Formation. Therefore, the different colors and intensities of CL observed in these rocks are probably caused by the presence of ion activators such as Mn2+ and is not an activator/inhibitor combination. In the same way, the absence of luminescence is very probably caused by the absence of activator ions and not due to the low concentration of inhibitor ions such as Fe2+. The incorporation of Mn2+ in the different members of the Jandaíra Formation must have been controlled by the redox state of the depositional environment and diagenesis. Therefore, it is possible that the luminescent members have been formed (e.g.,ooids) or have been modified (gastropod neomorphism) under reduction conditions in the depositional environments, in subsurface during the burial, or, in the case of Rosario Ledge samples , during the post-burial return to surface conditions. As regards the sudden changes from low to moderate and to strong luminescence, these features should indicate the precipitation of a fluid with chemical fluctuations, which formed the frequent zonations in the block cement of the Rosario Ledge samples. This study suggests that the different intensities and colors of CL should be correlated with the Mn2+ and Fe2+ contents, and stable isotopes of samples to determine the salinity, temperature, pH e Eh conditions during deposition
Resumo:
Recent years have seen a significant growth in surface modifications in titanium implants, resulting in shorter healing times in regions with low bone density. Among the different techniques, subtraction by chemical agents to increase oxidation has been applied for surface treatment of dental implants. However, this technique is generally unable to remove undesirable oxides, formed spontaneously during machining of titanium parts, raising costs due to additional decontamination stages. In order to solve this problem, the present study used plasma as an energy source to both remove these oxides and oxidize the titanium surface. In this respect, Ti disks were treated by hollow cathode discharge, using a variable DC power supply and vacuum system. Samples were previously submitted to a cleaning process using an atmosphere of Ar, H2 and a mixture of both, for 20 and 60 min. The most efficient cleaning condition was used for oxidation in a mixture of argon (60%) and oxygen (40%) until reaching a pressure of 2.2 mbar for 60 min at 500°C. Surfaces were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), atomic force microscopy (AFM), adhesion and cell proliferation. SEM showed less cell spreading and a larger number of projections orfilopodia in the treated samples compared to the control sample. AFM revealed surface defects in the treated samples, with varied geometry between peaks and valleys. Biological assays showed no significant difference in cell adhesion between treated surfaces and the control. With respect to cell proliferation, the treated surface exhibited improved performance when compared to the control sample. We concluded that the process was efficient in removing primary oxides as well as in oxidizing titanium surfaces
Resumo:
Objective: The aim of the study was to investigate physical characteristics and to examine association between somatotype and performance in collegiate runners of 100 m and 400 m. Methods: The sample, male runners (n=39) competing at the regional level in the state of Rio Grande do Norte, Brazil, had height, body mass, skinfolds, limb circumference and skeletal breadths measured. Then, the somatotype was calculated by Health-Carter method. Races (100 m and 400 m) were held to assess athletic performance. Descriptive statistics were calculated for the total sample, as well as for the 100 m and 400 m groups, and established four subgroups, named quartiles. For analysis between groups of runners (100 m x 400 m) was used Student's t test for independent samples. To examine the relationship between the race times and anthropometric variables, was used the Pearson correlation test. The somatotype dispersion distance and somatotype spatial distance were calculated among subgroups. One-way analysis of variance, the Wilcoxon test followed of Tukey post test, and correlation analysis were used with a significance level of p<0.05. Results: Somatotype with mesomorphy and ectomorphy dominance was exhibited by 100 m and 400 m athletes. Endomorphy was low in both groups, especially in 400m runners, who had more elongated body types than 100 m runners. When separately compared by athletic performance quartile, 100 m sprinters of better qualifications (G100-G1) had somatotype with dominant mesomorphy, whereas 400 m runners had somatotype with dominant ectomorphy. A significant correlation (r = -0.55, p=0.008) between calf circumference and 100 m race times was observed showing the importance of muscularity, whereas a significant correlation was found between height and 400 m race times (r = -0.53, p=0.02) showing the importance of linearity. Conclusion: Runners of 100 and 400 may show differences in physical characteristics, depending on the level of athletic performance. Anthropometric periodic evaluations may help in the training process of these athletes. However, more specific assessment parameters should be taken into account, because somatotype by itself has not power to predict whether an individual will succeed in racing speed
Resumo:
condições de saúde são questões que precisam ser investigadas na nossa sociedade. Diante da inexistência de estudos que abordem os aspectos psicológicos e físicos desses profissionais, tornou-se necessário e relevante esta investigação para a área de segurança pública num contexto multidisciplinar. O estudo objetivou verificar as características da aptidão física e psicológica relacionada à saúde de policiais militares do Batalhão de Atividades Policiais Especiais (BOPE), da Polícia Militar do Rio Grande do Norte. A amostra selecionada de forma aleatória foi composta de 64 militares de diferentes graduações, do sexo masculino com idade média de 26,2±2,6 anos. Foram utilizados como instrumentos de medida o Questionário de Saúde Geral de Goldberg para avaliar a saúde geral; uma balança digital da marca Techline®, e estadiômetro portátil da marca Sanny® para avaliar a massa corporal e a estatura; fita antropométrica metálica Sanny® para avaliar a perimetria (circunferência do braço contraído, circunferência da panturrilha); paquímetro Sanny® para avaliar os diâmetros ósseos (bi-epicondilar umeral e bi-epicodilar femural); adipômetro Harpender® para avaliar a espessura das dobras cutâneas; dinamômetro manual Jamar para avaliar a força de preensão manual; flexímetro Sanny®, fotocélulas CEFISE modelo Speed Test Fit e o YoYo Intermitent Recovery Test para avaliar o desempenho físico ( flexibilidade, agilidade, velocidade e endurance anaeróbica). Os participantes apresentaram valores elevados para risco de distúrbio ou mesmo a presença de distúrbio, no que se refere à saúde geral; o grupo estudado é classificado como mesoendomorfico, predominando características de endurance aeróbico e anaeróbico e força que foram relacionadas com os aspectos psicológicos. O perfil somatotípico meso-endomorfo parece interferir nos elevados riscos de distúrbios psicológicos advindos da atividade laboral exigida, apesar dos mesmos apresentarem um bom desempenho físico
Resumo:
Last century Six Sigma Strategy has been the focus of study for many scientists, between the discoveries we have the importance of data process for the free of error product manufactory. So, this work focuses on data quality importance in an enterprise. For this, a descriptive-exploratory study of seventeen pharmacies of manipulations from Rio Grande do Norte was undertaken with the objective to be able to create a base structure model to classify enterprises according to their data bases. Therefore, statistical methods such as cluster and discriminant analyses were used applied to a questionnaire built for this specific study. Data collection identified four group showing strong and weak characteristics for each group and that are differentiated from each other
Resumo:
Most algorithms for state estimation based on the classical model are just adequate for use in transmission networks. Few algorithms were developed specifically for distribution systems, probably because of the little amount of data available in real time. Most overhead feeders possess just current and voltage measurements at the middle voltage bus-bar at the substation. In this way, classical algorithms are of difficult implementation, even considering off-line acquired data as pseudo-measurements. However, the necessity of automating the operation of distribution networks, mainly in regard to the selectivity of protection systems, as well to implement possibilities of load transfer maneuvers, is changing the network planning policy. In this way, some equipments incorporating telemetry and command modules have been installed in order to improve operational features, and so increasing the amount of measurement data available in real-time in the System Operation Center (SOC). This encourages the development of a state estimator model, involving real-time information and pseudo-measurements of loads, that are built from typical power factors and utilization factors (demand factors) of distribution transformers. This work reports about the development of a new state estimation method, specific for radial distribution systems. The main algorithm of the method is based on the power summation load flow. The estimation is carried out piecewise, section by section of the feeder, going from the substation to the terminal nodes. For each section, a measurement model is built, resulting in a nonlinear overdetermined equations set, whose solution is achieved by the Gaussian normal equation. The estimated variables of a section are used as pseudo-measurements for the next section. In general, a measurement set for a generic section consists of pseudo-measurements of power flows and nodal voltages obtained from the previous section or measurements in real-time, if they exist -, besides pseudomeasurements of injected powers for the power summations, whose functions are the load flow equations, assuming that the network can be represented by its single-phase equivalent. The great advantage of the algorithm is its simplicity and low computational effort. Moreover, the algorithm is very efficient, in regard to the accuracy of the estimated values. Besides the power summation state estimator, this work shows how other algorithms could be adapted to provide state estimation of middle voltage substations and networks, namely Schweppes method and an algorithm based on current proportionality, that is usually adopted for network planning tasks. Both estimators were implemented not only as alternatives for the proposed method, but also looking for getting results that give support for its validation. Once in most cases no power measurement is performed at beginning of the feeder and this is required for implementing the power summation estimations method, a new algorithm for estimating the network variables at the middle voltage bus-bar was also developed
Resumo:
Ensuring the dependability requirements is essential for the industrial applications since faults may cause failures whose consequences result in economic losses, environmental damage or hurting people. Therefore, faced from the relevance of topic, this thesis proposes a methodology for the dependability evaluation of industrial wireless networks (WirelessHART, ISA100.11a, WIA-PA) on early design phase. However, the proposal can be easily adapted to maintenance and expansion stages of network. The proposal uses graph theory and fault tree formalism to create automatically an analytical model from a given wireless industrial network topology, where the dependability can be evaluated. The evaluation metrics supported are the reliability, availability, MTTF (mean time to failure), importance measures of devices, redundancy aspects and common cause failures. It must be emphasized that the proposal is independent of any tool to evaluate quantitatively the target metrics. However, due to validation issues it was used a tool widely accepted on academy for this purpose (SHARPE). In addition, an algorithm to generate the minimal cut sets, originally applied on graph theory, was adapted to fault tree formalism to guarantee the scalability of methodology in wireless industrial network environments (< 100 devices). Finally, the proposed methodology was validate from typical scenarios found in industrial environments, as star, line, cluster and mesh topologies. It was also evaluated scenarios with common cause failures and best practices to guide the design of an industrial wireless network. For guarantee scalability requirements, it was analyzed the performance of methodology in different scenarios where the results shown the applicability of proposal for networks typically found in industrial environments
Resumo:
This work consists of the creation of a Specialist System which utilizes production rules to detect inadequacies in the command circuits of an operation system and commands of electric engines known as Direct Start. Jointly, three other modules are developed: one for the simulation of the commands diagram, one for the simulation of faults and another one for the correction of defects in the diagram, with the objective of making it possible to train the professionals aiming a better qualification for the operation and maintenance. The development is carried through in such a way that the structure of the task allows the extending of the system and a succeeding promotion of other bigger and more complex typical systems. The computational environment LabView is employed to enable the system
Resumo:
The calcium phosphate ceramics have been very investigated as material for bone implants. The tricalcium phosphate (β-TCP) had a great potential for application in temporary implants like a resorbable bioceramic. This material presents a limitation in its sintering temperature due to occurrence of the allotropic transformation β → α at temperatures around 1200°C, not allowing the attainment of dense ceramic bodies. This transformation also causes cracks, what diminishes the mechanical strength, limiting its use to applications of low mechanical requests. This work studies the influence of the addition of manganese oxide in the sintering of β-TCP. Two processing routes were investigated. The first was the powder metallurgy conventional process. The test bodies (samples) were pressed and sintering at temperatures of 1200 and 1250°C. The second route was uniaxial hot pressing and its objective was to obtain samples with high relative density. The samples were physically characterized through density and porosity measurements. The thermal behavior was studied through dilatometric, thermal differential and thermogravimetric analysis. The mechanical properties were characterized by three point flexure test and Vickers microhardness measurements. The microstructure was analyzed by scanning electron microscopy. The addition of manganese oxide caused an improvement of the mechanical strength in relation to the material without additive and promoting the stabilization of β-TCP to greater temperatures
Resumo:
Porous ceramics have many applications: thermal insulation, catalytic support, materials to fire protection, filters, and others. There are many techniques to production of ceramic filters. One technique to obtain ceramic filters is the replication method. This method consists in the impregnation of polymeric foam with ceramic slurry followed by a heating treatment that will burn out the organic elements and sintering of the material, resulting of a replication of the original foam. To perform their functions ceramic filters must satisfy mechanical requirements and permeability parameters (darcian k1 and no-darcian k2). The permeability and the strength of the ceramic material are dependent of the pore size and pore distribution. To the use at high temperatures the evaluation of mechanical properties in these temperatures is necessary. In this work the mechanical behavior of two commercial porous ceramics (10 and 40 poros per inch) was studied these materials were submitted to compression and four-point flexure test (room temperature, at 1000 °C, after thermal shock). Density and porosity measurements, permeability tests and microstructural analysis by scanning electronic microscopy (SEM) were realized. The Results showed that the decrease of mechanical strength of these materials, when submitted to thermal shock, occur for propagation of new cracks from cracks pre-existing and the permeability depends of the pore size