3 resultados para Decomposition Method
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The seismic processing technique has the main objective to provide adequate picture of geological structures from subsurface of sedimentary basins. Among the key steps of this process is the enhancement of seismic reflections by filtering unwanted signals, called seismic noise, the improvement of signals of interest and the application of imaging procedures. The seismic noise may appear random or coherent. This dissertation will present a technique to attenuate coherent noise, such as ground roll and multiple reflections, based on Empirical Mode Decomposition method. This method will be applied to decompose the seismic trace into Intrinsic Mode Functions. These functions have the properties of being symmetric, with local mean equals zero and the same number of zero-crossing and extremes. The developed technique was tested on synthetic and real data, and the results were considered encouraging
Resumo:
The seismic processing technique has the main objective to provide adequate picture of geological structures from subsurface of sedimentary basins. Among the key steps of this process is the enhancement of seismic reflections by filtering unwanted signals, called seismic noise, the improvement of signals of interest and the application of imaging procedures. The seismic noise may appear random or coherent. This dissertation will present a technique to attenuate coherent noise, such as ground roll and multiple reflections, based on Empirical Mode Decomposition method. This method will be applied to decompose the seismic trace into Intrinsic Mode Functions. These functions have the properties of being symmetric, with local mean equals zero and the same number of zero-crossing and extremes. The developed technique was tested on synthetic and real data, and the results were considered encouraging
Resumo:
PLCs (acronym for Programmable Logic Controllers) perform control operations, receiving information from the environment, processing it and modifying this same environment according to the results produced. They are commonly used in industry in several applications, from mass transport to petroleum industry. As the complexity of these applications increase, and as various are safety critical, a necessity for ensuring that they are reliable arouses. Testing and simulation are the de-facto methods used in the industry to do so, but they can leave flaws undiscovered. Formal methods can provide more confidence in an application s safety, once they permit their mathematical verification. We make use of the B Method, which has been successfully applied in the formal verification of industrial systems, is supported by several tools and can handle decomposition, refinement, and verification of correctness according to the specification. The method we developed and present in this work automatically generates B models from PLC programs and verify them in terms of safety constraints, manually derived from the system requirements. The scope of our method is the PLC programming languages presented in the IEC 61131-3 standard, although we are also able to verify programs not fully compliant with the standard. Our approach aims to ease the integration of formal methods in the industry through the abbreviation of the effort to perform formal verification in PLCs