4 resultados para Data mining, Business intelligence, Previsioni di mercato

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The northern portion of the Rio Grande do Norte State is characterized by intense coastal dynamics affecting areas with ecosystems of moderate to high environmental sensitivity. In this region are installed the main socioeconomic activities of RN State: salt industry, shrimp farm, fruit industry and oil industry. The oil industry suffers the effects of coastal dynamic action promoting problems such as erosion and exposure of wells and pipelines along the shore. Thus came the improvement of such modifications, in search of understanding of the changes which causes environmental impacts with the purpose of detecting and assessing areas with greater vulnerability to variations. Coastal areas under influence oil industry are highly vulnerable and sensitive in case of accidents involving oil spill in the vicinity. Therefore, it was established the geoenvironmental monitoring of the region with the aim of evaluating the entire coastal area evolution and check the sensitivity of the site on the presence of oil. The goal of this work was the implementation of a computer system that combines the needs of insertion and visualization of thematic maps for the generation of Environmental Vulnerability maps, using techniques of Business Intelligence (BI), from vector information previously stored in the database. The fundamental design interest was to implement a more scalable system that meets the diverse fields of study and make the appropriate system for generating online vulnerability maps, automating the methodology so as to facilitate data manipulation and fast results in cases of real time operational decision-making. In database development a geographic area was established the conceptual model of the selected data and Web system was done using the template database PostgreSQL, PostGis spatial extension, Glassfish Web server and the viewer maps Web environment, the GeoServer. To develop a geographic database it was necessary to generate the conceptual model of the selected data and the Web system development was done using the PostgreSQL database system, its spatial extension PostGIS, the web server Glassfish and GeoServer to display maps in Web

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Educational Data Mining is an application domain in artificial intelligence area that has been extensively explored nowadays. Technological advances and in particular, the increasing use of virtual learning environments have allowed the generation of considerable amounts of data to be investigated. Among the activities to be treated in this context exists the prediction of school performance of the students, which can be accomplished through the use of machine learning techniques. Such techniques may be used for student’s classification in predefined labels. One of the strategies to apply these techniques consists in their combination to design multi-classifier systems, which efficiency can be proven by results achieved in other studies conducted in several areas, such as medicine, commerce and biometrics. The data used in the experiments were obtained from the interactions between students in one of the most used virtual learning environments called Moodle. In this context, this paper presents the results of several experiments that include the use of specific multi-classifier systems systems, called ensembles, aiming to reach better results in school performance prediction that is, searching for highest accuracy percentage in the student’s classification. Therefore, this paper presents a significant exploration of educational data and it shows analyzes of relevant results about these experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soft skills and teamwork practices were identi ed as the main de ciencies of recent graduates in computer courses. This issue led to a realization of a qualitative research aimed at investigating the challenges faced by professors of those courses in conducting, monitoring and assessing collaborative software development projects. Di erent challenges were reported by teachers, including di culties in the assessment of students both in the collective and individual levels. In this context, a quantitative research was conducted with the aim to map soft skill of students to a set of indicators that can be extracted from software repositories using data mining techniques. These indicators are aimed at measuring soft skills, such as teamwork, leadership, problem solving and the pace of communication. Then, a peer assessment approach was applied in a collaborative software development course of the software engineering major at the Federal University of Rio Grande do Norte (UFRN). This research presents a correlation study between the students' soft skills scores and indicators based on mining software repositories. This study contributes: (i) in the presentation of professors' perception of the di culties and opportunities for improving management and monitoring practices in collaborative software development projects; (ii) in investigating relationships between soft skills and activities performed by students using software repositories; (iii) in encouraging the development of soft skills and the use of software repositories among software engineering students; (iv) in contributing to the state of the art of three important areas of software engineering, namely software engineering education, educational data mining and human aspects of software engineering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soft skills and teamwork practices were identi ed as the main de ciencies of recent graduates in computer courses. This issue led to a realization of a qualitative research aimed at investigating the challenges faced by professors of those courses in conducting, monitoring and assessing collaborative software development projects. Di erent challenges were reported by teachers, including di culties in the assessment of students both in the collective and individual levels. In this context, a quantitative research was conducted with the aim to map soft skill of students to a set of indicators that can be extracted from software repositories using data mining techniques. These indicators are aimed at measuring soft skills, such as teamwork, leadership, problem solving and the pace of communication. Then, a peer assessment approach was applied in a collaborative software development course of the software engineering major at the Federal University of Rio Grande do Norte (UFRN). This research presents a correlation study between the students' soft skills scores and indicators based on mining software repositories. This study contributes: (i) in the presentation of professors' perception of the di culties and opportunities for improving management and monitoring practices in collaborative software development projects; (ii) in investigating relationships between soft skills and activities performed by students using software repositories; (iii) in encouraging the development of soft skills and the use of software repositories among software engineering students; (iv) in contributing to the state of the art of three important areas of software engineering, namely software engineering education, educational data mining and human aspects of software engineering.