8 resultados para Dany ecològic
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
SILVA, Dany Geraldo Kramer Cavalcanti e et al. Lixo hospitalar: na estrutura curricular de cursos superiores de saude na cidade de Imperatriz-MA. Educação Ambiental em Ação, v. 27, p. 00-10, 2009.
Resumo:
AZEVEDO, Luciana Karla Araújo de, et al. Caracterização e correlação do fenômeno pró-zona com títulos de sororeatividade do VDRL e reação de imuno-fluorescência indireta em soros de pacientes com sífilis. Revista Brasileira de Análises Clínicas, Rio de Janeiro, v. 38, n. 2, p. 183-187, 2006.
Resumo:
CARVALHO, Aurean de Paula et al. Determinaçao do indice de balneabilidade do açude de Bodocongo em Campina Grande-PB, Brasil, a partir de indicadores biologicos. Educação Ambiental em Ação, v. 28, 2009
Resumo:
CARVALHO FILHO, Antonio M. et al. Estudo qualitativo sobre resíduos sólidos e perfuro-cortantes no município de Itaguatins, TO. Educação Ambiental em Ação, v. 28, 2009
Resumo:
This objective of this work was to investigate the enviromental perception of technician of clinical laboratories, in the city of the Natal/RN, focusing the generated environmental aspects and impacts in the activities, the strategical importance of the environmental management for the activity, as well as the knowledge about environmental norms and resolutions applied to the sector. A type survey exploratory and descriptive was carried through, using a questionnaire applied in 82 clinical laboratory, getting a return tax of 53,65%, or either, 44 laboratories. The results of the descriptive analyses point with respect to environmental conscience of the interviewed, therefore the majority (75%) described the activities of clinical analyses as great imapact on the environment. Although the interviewed present certain knowledge on the advantages of practical of envivonmental protection and the risks that the activities of clinical analyses offer, some important practical of environmental protection arer not develped by the majority of the iterviewed. The carried through statistical analyses had allowed to investigate the level of environmental knowledge of the professionals of the sector, being consisted themselves that they present little knowledge on practical ISO 14001 and of environmental protection in the health public sector. It can be conclude that, a program of environmental qualification for the sector becomes necessary, in order to improve the knowledge of the professionals of the area, and that the majority of the professionals would have a good recptivity therefore recognize the benefits of the practicadl of environmental protection for the competitiveness of the clinical analyses laboratories
Resumo:
Removing microcontaminants from effluents is a challenge today, because of its high cost and low efficiency, especially in the treatment of effluents containing heavy metals. An alternative that has emerged is the use of biodegradable nanocomposites, which exhibit good removal and recovery performances, in addition to its low cost. With this in mind, the present study aimed to develop and characterize a nanocomposite based on hydroxyapatite (HAP), polyurethane (PU) and polyvinyl alcohol (PVA) for removing heavy metals. Thus, the research was conducted in several steps: i)- Physico-chemical and microbiological hospital effluent characterization; ii)- Production of hydroxyapatite by aqueous precipitation technique, and their characterization; iii)- Production of the nanocomposite in which the hydroxyapatite was added to the polyurethane prepolymers and then the polyvinyl alcohol/hydroxyapatite film was produced; iv)- Polyvinyl composite without film PU/HAp was also produced in the proportions of 20 and 40% HAp; v)- The composites was characterized by the techniques of XRD, FTIR, SEM / EDS, BET, Zeta Potential and TGA; vi)- The sisal and coconut fibres were washed and dried for comparative tests of adsorption; vii)- Adsorption tests for evaluating the removal of heavy metals (nickel and cadmium). Initial screening adsorption capacity (HAp; PU/HAp - 20 and 40%; PU / HAp / PVA), kinetic studies of adsorption of Cd (II) by HAp; multifactorial design analysis (factorial design) for identifying the most important variables in the adsorption of Cd (II) by composite PU/HAp. Also comparative analysis of adsorption of Cd and Ni by composite PU/HAp were conducted, as well as comparative tests of adsorption of Cd (coconut fibre) and Ni (sisal fibre). It was possible to verify that the composite PU/HAp 40% showed better effectiveness for the removal of Cd (II) and Ni (II), above 80%, equivalent to the lignocellulosic fibre used and HAp produced. As main conclusion, it can be referred that the composite PU/HAp 40% is an effective adsorvent to wastewater treatment for heavy metal removal, with low cost and high efficiency
Resumo:
This work has the main objective to obtain nano and microcrystals of cellulose, extracted from the pineapple leaf fibres (PALF), as reinforcement for the manufacture of biocomposite films with polymeric matrices of Poly(vinyl alcohol) (PVA) and Poly(lactic acid) (PLA). The polymer matrices and the nano and microcrystals of cellulose were characterised by means of TGA, FTIR and DSC. The analysis was performed on the pineapple leaves to identify the macro and micronutrients. The fibers of the leaves of the pineapple were extracted in a desfibradeira mechanical. The PALF extracted were washed to remove washable impurities and subsequently treated with sodium hydroxide (NaOH) and sodium hypochlorite (NaClO) in the removal of impurities, such as fat, grease, pectates, pectin and lignin. The processed PALF fibers were hydrolysed in sulfuric acid (H2SO4) at a concentration of 13.5 %, to obtain nano and microcrystals of cellulose. In the manufacture of biocomposite films, concentrations of cellulose, 0 %, 1 %, 3 %, 6 %, 9% and 12% were used as reinforcement to the matrices of PVA and PLA. The PVA was dissolved in distilled water at 80 ± 5 oC and the PLA was dissolved in dichloromethane at room temperature. The manufacture of biocompósitos in the form of films was carried out by "casting". Tests were carried out to study the water absorption by the films and mechanical test of resistance to traction according to ASTM D638-10 with a velocity of 50 mm/min.. Chi-square statistical test was used to check for the existence of significant differences in the level of 0.05: the lengths of the PALF, lengths of the nano and microcrystals of cellulose and the procedures used for the filtration using filter syringe of 0.2 μm or filtration and centrifugation. The hydrophilicity of biocompósitos was analysed by measuring the contact angle and the thickness of biocompósitos were compared as well as the results of tests of traction. Statistical T test - Student was also applied with the significance level (0.05). In biodegradation, Sturm test of standard D5209 was used. Nano and microcrystals of cellulose with lengths ranging from 7.33 nm to 186.17 nm were found. The PVA films showed average thicknesses of 0.153 μm and PLA 0.210 μm. There is a strong linear correlation directly proportional between the traction of the films of PVA and the concentration of cellulose in the films (composite) (0,7336), while the thickness of the film was correlated in 0.1404. Nano and microcrystals of cellulose and thickness together, correlated to 0.8740. While the correlation between the cellulose content and tensile strength was weak and inversely proportional (- 0,0057) and thickness in -0.2602, totaling -0,2659 in PLA films. This can be attributed to the nano and microcrystals of cellulose not fully adsorbed to the PLA matrix. In the comparison of the results of the traction of the two polymer matrices, the nano and microcrystals have helped in reducing the traction of the films (composite) of PLA. There was still the degradation of the film of PVA, within a period of 20 days, which was not seen in the PLA film, on the other hand, the observations made in the literature, the average time to start the degradation is above 60 days. What can be said that the films are biodegradable composites, with hydrophilicity and the nano and microcrystals of cellulose, contribute positively in the improvement of the results of polymer matrices used.
Resumo:
AZEVEDO, Luciana Karla Araújo de, et al. Caracterização e correlação do fenômeno pró-zona com títulos de sororeatividade do VDRL e reação de imuno-fluorescência indireta em soros de pacientes com sífilis. Revista Brasileira de Análises Clínicas, Rio de Janeiro, v. 38, n. 2, p. 183-187, 2006.