5 resultados para DNA - Modelos
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
In vitro and in animal models, APE1, OGG1, and PARP-1 have been proposed as being involved with inflammatory response. In this work, we have investigated if the SNPs APE1 Asn148Glu, OGG1 Ser326Cys, and PARP-1 Val762Ala are associated to meningitis and also developed a system to enable the functional analysis of polymorphic proteins. Patients with bacterial meningitis (BM), aseptic meningitis (AM) and controls (non-infected) genotypes were investigated by PIRA-PCR or PCR-RFLP. DNA damages were detected in genomic DNA by Fpg treatment. IgG and IgA were measured from plasma and the cytokines and chemokines were measured from cerebrospinal fluid samples using Bio-Plex assays. The levels of NF-κB and c-Jun were measured in CSF by dot blot assays. A significant (P<0.05) increase in the frequency of APE1 148Glu allele in BM and AM patients was observed. A significant increase in the genotypes Asn/Asn in control group and Asn/Glu in BM group was also found. For the SNP OGG1 Ser326Cys, the genotype Cys/Cys was more frequent (P<0.05) in BM group. The frequency of PARP-1 Val/Val genotype was higher in control group (P<0.05). The occurrence of combined SNPs increased significantly in BM patients, indicating that these SNPs may be associated to the disease. Increasing in sensitive sites to Fpg was observed in carriers of APE1 148Glu allele or OGG1 326Cys allele, suggesting that SNPs affect DNA repair activity. Alterations in IgG production were observed in the presence of SNPs APE1Asn148Glu, OGG1Ser326Cys or PARP-1Val762Ala. Reductions in the levels ofIL-6, IL-1Ra, MCP-1/CCL2and IL-8/CXCL8 were observed in the presence of APE1148Glu allele in BM patients, however no differences were observed in the levels of NF-κB and c-Jun considering genotypes and analyzed groups. Using APE1 as model, a system to enable the analysis of cellular effects and functional characterization of polymorphic proteins was developed using strategies of cloning APE1 cDNA in pIRES2-EGFP vector, cellular transfection of the construction obtained, siRNA for endogenous APE1 and cellular cultures genotyping. In conclusion, we obtained evidences of an effect of SNPs in DNA repair genes on the regulation of immune response. This is a pioneering work in the field that shows association of BER variant enzymes with an infectious disease in human patients, suggesting that the SNPs analyzed may affect immune response and damage by oxidative stress level during brain infection. Considering these data, new approaches of functional characterization must be developed to better analysis and interactions of polymorphic proteins in response to this context
Resumo:
Several clinic evaluations have been possible with radiobiocomplexes labeled with technetium-99m (99mTc). Some natural and synthetic drugs are capable of to interfere on the labeling of blood constituents with 99mTc, as well as on the biodistribution of radiobiocomplexes. Authors have also reported about the toxicity of several natural products. The aim of this study was to compare the effects of the Mentha crispa (hortelã) and of the Hypericum perforatum (hipérico) in different experimental models. On the labeling of red blood cells (RBC) and plasma and cellular proteins with 99mTc, both extracts were capable of to decrease the radioactivity percentage on the cellular compartment and on the fixation on plasma and cellular proteins. On the morphometry of the RBC, only the hortelã was capable to alter the shape and the perimeter/area ratio of the RBC. On the biodistribution of the radiobiocomplex sodium pertechnetate (Na99mTcO4), the hortelã increased the Na99mTcO4 distribution in the kidney, spleen, liver and thyroid, meanwhile the hipérico decreased the Na99mTcO4 distribution in the bone, stomach, lungs and thyroid, and increased the Na99mTcO4 distribution in the pancreas. On the bacterial cultures survival, the hipérico was capable of to protect the bacteria against the stannous chloride (SnCl2) effect. The hipérico did not alter the topology of plasmidial DNA and did not protect the plasmidial DNA against the SnCl2 action. Probably, the effects presented by both extracts could be due to chemical compounds of the extracts that could alter the morphology of the RBC and the plasma membrane ions transport, and/or by phytocomplexes that could be formed with different effects dependent on the biological system considered
Resumo:
Derivatives of propionic acid NSAIDs are irreversible inhibitors of cyclooxygenase enzyme widely used. The aim of this study was to evaluate, through different experimental models, biological effects of derivatives of propionic acid (fenoprofen, naproxen, ibuprofen and ketoprofen) in cellular and molecular level. The labeling of blood constituents with technetium-99m (99mTc) and morphological analysis of erythrocytes of blood of rats, as well as growth, survival of cultures of Escherichia coli (E. coli) and the assessment of bacterial plasmid electrophoretic profiles were models used for experimental evaluation of possible biological effects of antiinflammatory drugs. The results show that, in general, anti-inflammatory drugs evaluated were not able to alter the labeling of blood constituents with 99mTc, the morphology of red blood cells from blood of rats, as well as the growth of cultures of E. coli and the electrophoretic profile of plasmid DNA. However, naproxen appears to cytotoxic effect on bacterial cultures, plasmids and genotoxic effects in reducing the action of stannous chloride in cultures of E. coli. The use of experimental fast performance and low cost was important for assessment of biological effects, contributing to a better understanding of the properties of propionic acid derivatives studied. anti-inflammatory, blood constituents, technetium-99m, stannous chloride, Escherichia coli; DNA
Resumo:
In this thesis, we study the thermo-electronic properties of the DNA molecule. For this purpose, we used three types of models with the DNA, all assuming a at geometry (2D), each built by a sequence of quasiperiodic (Fibonacci and / or Rudin-Shapiro) and a sequence of natural DNA, part of the human chromosome Ch22. The first two models have two types of components that are the nitrogenous bases (guanine G, cytosine C, adenine A and thymine T) and a cluster sugar-phosphate (SP), while the third has only the nitrogenous bases. In the first model we calculate the density of states using the formalism of Dyson and transmittance for the time independent Schr odinger equation . In the second model we used the renormalizationprocedure for the profile of the transmittance and consequently the I (current) versus V (voltage). In the third model we calculate the density of states formalism by Dean and used the results together with the Fermi-Dirac statistics for the chemical potential and the quantum specific heat. Finally, we compare the physical properties found for the quasi-periodic sequences and those that use a portion of the genomic DNA sequence (Ch22).
Resumo:
In vitro and in animal models, APE1, OGG1, and PARP-1 have been proposed as being involved with inflammatory response. In this work, we have investigated if the SNPs APE1 Asn148Glu, OGG1 Ser326Cys, and PARP-1 Val762Ala are associated to meningitis and also developed a system to enable the functional analysis of polymorphic proteins. Patients with bacterial meningitis (BM), aseptic meningitis (AM) and controls (non-infected) genotypes were investigated by PIRA-PCR or PCR-RFLP. DNA damages were detected in genomic DNA by Fpg treatment. IgG and IgA were measured from plasma and the cytokines and chemokines were measured from cerebrospinal fluid samples using Bio-Plex assays. The levels of NF-κB and c-Jun were measured in CSF by dot blot assays. A significant (P<0.05) increase in the frequency of APE1 148Glu allele in BM and AM patients was observed. A significant increase in the genotypes Asn/Asn in control group and Asn/Glu in BM group was also found. For the SNP OGG1 Ser326Cys, the genotype Cys/Cys was more frequent (P<0.05) in BM group. The frequency of PARP-1 Val/Val genotype was higher in control group (P<0.05). The occurrence of combined SNPs increased significantly in BM patients, indicating that these SNPs may be associated to the disease. Increasing in sensitive sites to Fpg was observed in carriers of APE1 148Glu allele or OGG1 326Cys allele, suggesting that SNPs affect DNA repair activity. Alterations in IgG production were observed in the presence of SNPs APE1Asn148Glu, OGG1Ser326Cys or PARP-1Val762Ala. Reductions in the levels ofIL-6, IL-1Ra, MCP-1/CCL2and IL-8/CXCL8 were observed in the presence of APE1148Glu allele in BM patients, however no differences were observed in the levels of NF-κB and c-Jun considering genotypes and analyzed groups. Using APE1 as model, a system to enable the analysis of cellular effects and functional characterization of polymorphic proteins was developed using strategies of cloning APE1 cDNA in pIRES2-EGFP vector, cellular transfection of the construction obtained, siRNA for endogenous APE1 and cellular cultures genotyping. In conclusion, we obtained evidences of an effect of SNPs in DNA repair genes on the regulation of immune response. This is a pioneering work in the field that shows association of BER variant enzymes with an infectious disease in human patients, suggesting that the SNPs analyzed may affect immune response and damage by oxidative stress level during brain infection. Considering these data, new approaches of functional characterization must be developed to better analysis and interactions of polymorphic proteins in response to this context