3 resultados para DISTRIBUTION RANGE

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Textile production has been considered as an activity of high environmental impact due to the generation of large volumes of waste water with high load of organic compounds and strongly colored effluents, toxic and difficult biodegradability. This thesis deals with obtaining porous alumina ceramic membranes for filtration of textile effluent in the removal of contaminants, mainly color and turbidity. Two types of alumina with different particle sizes as a basis for the preparation of formulation for mass production of ceramic samples and membranes. The technological properties of the samples were evaluated after using sintering conditions: 1,350ºC-2H, 1,450ºC-30M, 1,450ºC-2H, 1,475ºC-30M and 1,475ºC-2H. The sintered samples were characterized by XRD, XRF, AG, TG, DSC, DL, AA, MEA, RL, MRF-3P, SEM and Intrusion Porosimetry by Mercury. After the characterization, a standard membrane was selected with their respective sintering condition for the filterability tests. The effluent was provided by a local Textile Industry and characterized at the entry and exit of the treatment plant. A statistical analysis was used to study the effluent using the following parameters: pH, temperature, EC, SS, SD, oil and grease, turbidity, COD, DO, total phosphorus, chlorides, phenols, metals and fecal coliform. The filtered effluent was evaluated by using the same parameters. These results demonstrate that the feasibility of the use of porous alumina ceramic membranes for removing contaminants from textile effluent with improved average pore size of 0.4 micrometre (distribution range varying from 0,025 to 2.0 micrometre), with total porosity of 29.66%, and average percentages of color removal efficiency of 89.02%, 92.49% of SS, turbidity of 94.55%, metals 2.70% (manganese) to 71.52% (iron) according to each metal and COD removal of 72.80%

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ethnobiology studies Local Ecological Knowledge (LEK) as well as the use and management of natural resources by local communities in order to understand how the environment is perceived, known and classified by human groups. In fishing communities, LEK adds empirical information about the biology of aquatic species and complements scientific findings, especially when it is difficult to obtain factual information during studies on cetaceans, whose behavior is essentially underwater. Cetaceans (whales and dolphins) are constantly threatened by human activities, especially by accidental capture of small coastal species, as in the case of the estuarine dolphin (Sotalia guianensis), object of this study. Ethnobiological researches in fishing communities are of great importance and can clarify aspects of the biology and conservation of this species. Although extensively studied throughout its distribution range, there are still gaps in the knowledge about S. guianensis. Therefore, fishers local ecological knowledge becomes an additional tool to get and confirm information about S. guianensis. This study evaluated the LEK of artisanal fishers who are daily exposed to local population of S. guianensis, through the use of semistructured interviews (N=116). The interviewed fishers were asked about the biology and popular classification of S. guianensis and about possible interactions between this dolphin and them. The studied communities were located in Tibau do Sul (n=39), Pipa (n=36) and Baía Formosa (n=41), all on the south coast of Rio Grande do Norte, Brazil. The study was based on the assumption that differences in fishers LEK among those communities would be caused by both the variety of fishing environments (lagoon/estuary and ocean) and the intensity of tourism activities. Fishers knowledge is expressive and differed among the studied communities depending on the topic investigated. Fishers correctly reported the habitat, distribution, seasonality and behavioral particularities of S. guianensis. Tourism mainly affected the naming of the species. The study results also suggest that marine fishers have greater knowledge about the species than the estuarine/lagoon ones. Local populations accumulate empirical knowledge according to their environment. Hence, it is important to take into account both empirical knowledge and popular participation in management systems, in order to maintain information sharing among communities

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Textile production has been considered as an activity of high environmental impact due to the generation of large volumes of waste water with high load of organic compounds and strongly colored effluents, toxic and difficult biodegradability. This thesis deals with obtaining porous alumina ceramic membranes for filtration of textile effluent in the removal of contaminants, mainly color and turbidity. Two types of alumina with different particle sizes as a basis for the preparation of formulation for mass production of ceramic samples and membranes. The technological properties of the samples were evaluated after using sintering conditions: 1,350ºC-2H, 1,450ºC-30M, 1,450ºC-2H, 1,475ºC-30M and 1,475ºC-2H. The sintered samples were characterized by XRD, XRF, AG, TG, DSC, DL, AA, MEA, RL, MRF-3P, SEM and Intrusion Porosimetry by Mercury. After the characterization, a standard membrane was selected with their respective sintering condition for the filterability tests. The effluent was provided by a local Textile Industry and characterized at the entry and exit of the treatment plant. A statistical analysis was used to study the effluent using the following parameters: pH, temperature, EC, SS, SD, oil and grease, turbidity, COD, DO, total phosphorus, chlorides, phenols, metals and fecal coliform. The filtered effluent was evaluated by using the same parameters. These results demonstrate that the feasibility of the use of porous alumina ceramic membranes for removing contaminants from textile effluent with improved average pore size of 0.4 micrometre (distribution range varying from 0,025 to 2.0 micrometre), with total porosity of 29.66%, and average percentages of color removal efficiency of 89.02%, 92.49% of SS, turbidity of 94.55%, metals 2.70% (manganese) to 71.52% (iron) according to each metal and COD removal of 72.80%