12 resultados para DIETARY BETA-1,3 GLUCAN
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Water-insoluble glucan was isolated from the baker’s yeast Saccharomyces cerevisiae. The yeast cells were treated with alkali and the residue then with acid. Chemical and NMR (1D and 2D) analyses showed that a linear (1→3)-β-glucan was purified that was not contaminated with other carbohydrates, proteins or phenolic compounds. The effects of the glucan on wound healing were assessed in human venous ulcers by histopathological analysis after 30 days of topical treatment. (1→3)-β-glucan enhanced ulcer healing and increased epithelial hyperplasia, as well as increased inflammatory cells, angiogenesis and fibroblast proliferation. In one patient who had an ulcer that would not heal for over 15 years, glucan treatment caused a 67.8% decrease in the area of the ulcer. This is the first study to investigate the effects of (1→3)-β-glucan on venous ulcer healing in humans; our findings suggest that this glucan is a potential natural biological response modifier in wound healing
Resumo:
Water-insoluble glucan was isolated from the baker’s yeast Saccharomyces cerevisiae. The yeast cells were treated with alkali and the residue then with acid. Chemical and NMR (1D and 2D) analyses showed that a linear (1→3)-β-glucan was purified that was not contaminated with other carbohydrates, proteins or phenolic compounds. The effects of the glucan on wound healing were assessed in human venous ulcers by histopathological analysis after 30 days of topical treatment. (1→3)-β-glucan enhanced ulcer healing and increased epithelial hyperplasia, as well as increased inflammatory cells, angiogenesis and fibroblast proliferation. In one patient who had an ulcer that would not heal for over 15 years, glucan treatment caused a 67.8% decrease in the area of the ulcer. This is the first study to investigate the effects of (1→3)-β-glucan on venous ulcer healing in humans; our findings suggest that this glucan is a potential natural biological response modifier in wound healing
Resumo:
Water-insoluble glucan was isolated from the baker’s yeast Saccharomyces cerevisiae. The yeast cells were treated with alkali and the residue then with acid. Chemical and NMR (1D and 2D) analyses showed that a linear (1→3)-β-glucan was purified that was not contaminated with other carbohydrates, proteins or phenolic compounds. The effects of the glucan on wound healing were assessed in human venous ulcers by histopathological analysis after 30 days of topical treatment. (1→3)-β-glucan enhanced ulcer healing and increased epithelial hyperplasia, as well as increased inflammatory cells, angiogenesis and fibroblast proliferation. In one patient who had an ulcer that would not heal for over 15 years, glucan treatment caused a 67.8% decrease in the area of the ulcer. This is the first study to investigate the effects of (1→3)-β-glucan on venous ulcer healing in humans; our findings suggest that this glucan is a potential natural biological response modifier in wound healing
Resumo:
Water-insoluble glucan was isolated from the baker’s yeast Saccharomyces cerevisiae. The yeast cells were treated with alkali and the residue then with acid. Chemical and NMR (1D and 2D) analyses showed that a linear (1→3)-β-glucan was purified that was not contaminated with other carbohydrates, proteins or phenolic compounds. The effects of the glucan on wound healing were assessed in human venous ulcers by histopathological analysis after 30 days of topical treatment. (1→3)-β-glucan enhanced ulcer healing and increased epithelial hyperplasia, as well as increased inflammatory cells, angiogenesis and fibroblast proliferation. In one patient who had an ulcer that would not heal for over 15 years, glucan treatment caused a 67.8% decrease in the area of the ulcer. This is the first study to investigate the effects of (1→3)-β-glucan on venous ulcer healing in humans; our findings suggest that this glucan is a potential natural biological response modifier in wound healing
Resumo:
To investigate the role of β-(1-3)-D-glucan on 99mTc labelled Escherichia coli translocation and cytokines secretion in rats submitted to small bowel ischemia/reperfusion injury. Methods: Five groups (n=10 each) of Wistar rats were subjected to control(C), sham(S), group IR subjected to 45 min of bowel ischemia/60 min of reperfusion(I/R), and group I/R+glucan subjected to 45 min of bowel ischemia/60 min of reperfusion(I/R) and injected with 2mg/Kg intramuscular. Translocation of labelled bacteria to mesenteric lymph nodes, liver, spleen, lung and serum was determined using radioactivity/count and colony forming units/g(CFU/g). Serum TNFα, IL-1β, IL-6, IL-10 were measured by ELISA. Results: CFU/g and radioactivity/count were higher in I/R than in I/R+glucan rats. In C, S and S+glucan groups, bacteria and radioactivity/count were rarely detected. The I/R+glucan rats had enhancement of IL-10 and suppressed production of serum TNFα, IL-1β and, IL-6, compared to I/R untreated animals. Conclusion: The β-(1-3)-D-glucan modulated the production of pro-inflammatory and anti-inflammatory cytokines during bowel ischemia/reperfusion, and attenuated translocation of labelled bacteria
Resumo:
To investigate the role of β-(1-3)-D-glucan on 99mTc labelled Escherichia coli translocation and cytokines secretion in rats submitted to small bowel ischemia/reperfusion injury. Methods: Five groups (n=10 each) of Wistar rats were subjected to control(C), sham(S), group IR subjected to 45 min of bowel ischemia/60 min of reperfusion(I/R), and group I/R+glucan subjected to 45 min of bowel ischemia/60 min of reperfusion(I/R) and injected with 2mg/Kg intramuscular. Translocation of labelled bacteria to mesenteric lymph nodes, liver, spleen, lung and serum was determined using radioactivity/count and colony forming units/g(CFU/g). Serum TNFα, IL-1β, IL-6, IL-10 were measured by ELISA. Results: CFU/g and radioactivity/count were higher in I/R than in I/R+glucan rats. In C, S and S+glucan groups, bacteria and radioactivity/count were rarely detected. The I/R+glucan rats had enhancement of IL-10 and suppressed production of serum TNFα, IL-1β and, IL-6, compared to I/R untreated animals. Conclusion: The β-(1-3)-D-glucan modulated the production of pro-inflammatory and anti-inflammatory cytokines during bowel ischemia/reperfusion, and attenuated translocation of labelled bacteria
Resumo:
The frequency of disseminated candidiasis caused by yeast has enhancing in intensive care unit. Despite the availability of new antifungal drugs, C. albicans sepsis mortality causes can be as high as 30-40%. So, it has been needed to looking for a new therapeutic medicament that helps in treatment and prevention of this infection. Previous data that demonstrated that particulated β-glucan stimulates the immune system and experiments of this work were conducted to investigating if β-glucan extracted from Saccharomices cerevisiae, could modified the evolution of mouse model C. albicans systemic infection. Balb/c mice with sepsis and β-1,3 glucan treated or not were analyzed the influence of β-1,3 glucan in survival of the animals, in the fungal burdens in kidney, in the production of urea and TNF even in the histopathology of kidney. The experiments shown that the infected animals a nd glucan treated had great survival (p<0,05), less unit form colony in kidney and normal levels of urea. In the kidney histopathology of not glucan treated animals it has seen more lesions when compared with treated animals. So we conclude that β-1,3 glucan could stimulate the immune system against disseminated C. albicans
Resumo:
To investigate the role of β-(1-3)-D-glucan on 99mTc labelled Escherichia coli translocation and cytokines secretion in rats submitted to small bowel ischemia/reperfusion injury. Methods: Five groups (n=10 each) of Wistar rats were subjected to control(C), sham(S), group IR subjected to 45 min of bowel ischemia/60 min of reperfusion(I/R), and group I/R+glucan subjected to 45 min of bowel ischemia/60 min of reperfusion(I/R) and injected with 2mg/Kg intramuscular. Translocation of labelled bacteria to mesenteric lymph nodes, liver, spleen, lung and serum was determined using radioactivity/count and colony forming units/g(CFU/g). Serum TNFα, IL-1β, IL-6, IL-10 were measured by ELISA. Results: CFU/g and radioactivity/count were higher in I/R than in I/R+glucan rats. In C, S and S+glucan groups, bacteria and radioactivity/count were rarely detected. The I/R+glucan rats had enhancement of IL-10 and suppressed production of serum TNFα, IL-1β and, IL-6, compared to I/R untreated animals. Conclusion: The β-(1-3)-D-glucan modulated the production of pro-inflammatory and anti-inflammatory cytokines during bowel ischemia/reperfusion, and attenuated translocation of labelled bacteria
Resumo:
To investigate the role of β-(1-3)-D-glucan on 99mTc labelled Escherichia coli translocation and cytokines secretion in rats submitted to small bowel ischemia/reperfusion injury. Methods: Five groups (n=10 each) of Wistar rats were subjected to control(C), sham(S), group IR subjected to 45 min of bowel ischemia/60 min of reperfusion(I/R), and group I/R+glucan subjected to 45 min of bowel ischemia/60 min of reperfusion(I/R) and injected with 2mg/Kg intramuscular. Translocation of labelled bacteria to mesenteric lymph nodes, liver, spleen, lung and serum was determined using radioactivity/count and colony forming units/g(CFU/g). Serum TNFα, IL-1β, IL-6, IL-10 were measured by ELISA. Results: CFU/g and radioactivity/count were higher in I/R than in I/R+glucan rats. In C, S and S+glucan groups, bacteria and radioactivity/count were rarely detected. The I/R+glucan rats had enhancement of IL-10 and suppressed production of serum TNFα, IL-1β and, IL-6, compared to I/R untreated animals. Conclusion: The β-(1-3)-D-glucan modulated the production of pro-inflammatory and anti-inflammatory cytokines during bowel ischemia/reperfusion, and attenuated translocation of labelled bacteria
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
Introdução: A displasia epitelial oral (DEO) é uma lesão potencialmente maligna, cujo diagnóstico e gradação se baseia na histologia das alterações arquiteturais e citológicas, preconizados pela OMS, que divide a lesão em leve, moderada e severa, o qual é subjetivo. Maior concordância é observada no uso do sistema binário (baixo/alto risco), o qual está relacionado ao risco de transformação maligna. As galectinas constituem uma família de lectinas e estão envolvidas na tumorigênese, sendo a -1, -3 e -7 as mais investigadas, devido a expressão alterada em cânceres orais. Materiais e métodos: Foi analisada a expressão imuno-histoquímica dessas proteínas em 50 espécimes de DEO (21 baixo/ 29 alto risco) e 5 de mucosa oral normal e relacionamos com a presença/ausência de marcação, padrão de distribuição, intensidade, localização epitelial (estratificação) (1/3 inferior, médio e superior), e localização celular (compartimento) (núcleo, citoplasma e membrana) . Resultados: Dos 29 casos de alto e dos 21 de baixo risco, 21 (72,4%) e 12 (57,1%) foram positivos para a galectina -1, respectivamente. Dessa forma, de 50 casos, 33 foram positivos. O núcleo e citoplasma foram positivos em 91,7% nas de baixo risco e em 90,5% nas de alto. Todos os casos de mucosa normal foram negativos. Com relação a galectina -3, dos 21 casos das DEOs de baixo risco, 12 (57,1%) apresentaram expressão e dos 29 casos das DEOs de alto risco, 15 (51,7%) foram positivos, havendo imunoexpressão em um total de 27 casos. O padrão difuso, assim como a fraca intensidade foram os mais freqüentes para os 2 graus. O núcleo e o citoplasma foram a localização mais comum tanto nas lesões de baixo (58,3%), quanto nas de alto risco (66,7%). Quatro casos de mucosa normal foram positivos, com marcação membranar e intensidade fraca. Dos 21 casos das DEOs de baixo risco, 17 (81%) apresentaram expressão imuno-histoquímica para a galectina -7 e das 29 DEOs de alto risco, 27 (93,1%) foram positivos. Então, a expressão imuno-histoquímica da galectina -7 foi observada em 44 casos, a maioria com intensidade de moderada a forte. O núcleo e o citoplasma foram a localização mais freqüente, nas de baixo (70,6%) e alto risco (66,7%). Quatro espécimes de mucosa normal marcaram membrana em terço médio e superior, com intensidade moderada a forte. Conclusões: Alterações na expressão das galectinas -3 e -7 e principalmente da -1 sugerem seu envolvimento na fisiopatologia das displasias, participando do processo de transformação de fenótipo normal para o displásico.
Resumo:
Several studies are carried out with aim to establish parameters to determine biologic behavior of oral squamous cell carcinoma, in order this neoplasm presents high rates of morbidity and mortality. The purpose of present research was to performe a clinic, morphologic and immunohistochemical analysis by the expression of galectins 1, 3, 4 and 7 in 65 cases of tongue squamous cell carcinoma, correlating this expression with clinics (outcome of the disease, metastasis and clinical staging) and morphologic parameters (malignancy histologic gradation system). The clinical and morphologic parameters analysed and expression of galectins 1, 3, 4 and 7 were submitted to statistical analysis (Qui2 test), observing that can be utilized as indicators of the biological behavior of the tongue squamous cell carcinoma. The galectin 1 was expressed in 87,7% of cases studied and it exhibit statistically significant correlation with metastasis (p=0,033) and clinical staging (p=0,016), it is located mostly in the citoplasm of the stomal cells. The immunoexpression of galectin 3 in 87,7% of cases was correlated with the presence of metastasis (p=0,033) and malignancy histological gradation system (p=0,031), observed, mostly of cases, in tongue squamous cell carcinoma of malignancy high grading. The galectin 4 showed no statistical significance to any of the parameters evaluated. The expression of galectin 7 in 73,8% of cases showed statistically significant correlation with the malignancy histologic grading (p=0,005), which is marking exclusively found in neoplastic epithelial cells, in the mostly of cases, it is found in cytoplasm and membrane (50%). The expressive immunopositivy of the galectins 1, 3 and 7, observed in this research, leads us to suggest a broad participation of these proteins in oral carcinogenesis, and its possible use as markers of biological behavior and tumor progression in cases of squamous cell carcinoma of the tongue