3 resultados para DBS

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background. Gaucher Disease (GD) is a hereditary lysosomal storage disorder characterized by the accumulation of glucosylceramide, mainly in the cells of the reticuloendothelial system, due to a deficiency of the enzyme acid β-glucosidase (GBA). Diagnosis is usually based on measurement of GBA activity in peripheral leukocytes. The purpose of this study was to evaluate the ability of screening for GBA and chitotriosidase activity using Dried Blood Spots on Filter Paper (DBS-FP) to identify individuals at high risk for GD in high-risk populations such as that of Tabuleiro do Norte, a small town in Northeastern Brazil. Methods. Between June 1, 2007 and May 31, 2008, 740 consented residents and descendants of traditional families from Tabuleiro do Norte were submitted to screening with DBS-FP. Subjects with GBA activity <2.19 nmol/h/mL were referred to analysis of GBA and chitotriosidase activity in peripheral leukocytes and in plasma, respectively. Subjects at highest risk for GD (GBA activity in peripheral leukocytes <5.6 nmol/h/mg protein) were submitted to molecular analysis to confirm diagnosis. Results. Screening with DBS-FP identified 135 subjects (18.2%) with GBA activity <2.19 nmol/h/mL, 131 of whom remained in the study. In 10 of these (7.6%), GBA activity in leukocytes was 2.6 5.5 nmol/h/mg protein. Subsequent molecular analysis confirmed 6 cases of heterozygosity and 4 normals for GD. Conclusion. DBS-FP assay was shown to be an effective initial GD screening strategy for high-prevalence populations in developing regions. Diagnosis could not be established from GBA activity in leukocytes alone, but required confirmation with molecular analysis

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Corrosion inhibition efficiency of saponified coconut oil (SCO) and sodium dodecilbenzene sulfonate (DBS) surfactants in AISI 1020 carbon steel was evaluated by electrochemical methods. These surfactants were also evaluated as microemulsion systems (SCO-ME and DBS-ME), of O/W type (water-rich microemulsion), in a Winsor IV region. They were obtained according to the following composition: 15% SCO, 15% butanol (30% Co-surfactant/Surfactant C/T), 10% organic phase (FO, kerosene) and 60% aqueous phase (FA). These systems were also used to solubilize the following nitrogenated substances: Diphenylcarbazide (DC), 2,4-dinitro-phenyl-thiosemicarbazide (TSC) and the mesoionic type compound 1,3,4-triazolium-2-thiolate (MI), that were investigated with the purpose of evaluating their anticorrosive effects. Comparative studies of carbon steel corrosion inhibition efficiencies of free DBS and DBS-ME, in brine and acidic media (0.5%), showed that DBS presents better inhibition results in acidic media (free DBS, 89% and DBS-ME, 93%). However, the values obtained for DBS in salted solution (72% free DBS and 77% DBS-ME) were similar to the ones observed for the SCO surfactant in brine (63% free SCO and 74% SCO-ME). Analysis of corrosion inhibition of the nitrogenated substances that were solubilized in the SCO-ME microemulsion system by the linear polarization method in brine (0.5% NaCl) showed that such compounds are very efficient an corrosion inhibitors [DC-ME-SCO (92%), TSC-ME-SCO (93%) and MI-ME-SCO (94%)]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is presented an integrated geophysical investigation of the spatial distribution of faults and deformation bands (DB´s) in a faulted siliciclastic reservoir analogue, located in Tucano Basin, Bahia State, northeastern Brazil. Ground Penetrating Radar (GPR) and permeability measurements allowed the analysis of the influence of DB´s in the rock permeability and porosity. GPR data were processed using a suitable flow parametrization in order to highlight discontinuities in sedimentary layers. The obtained images allowed the subsurface detection of DB´s presenting displacements greater that 10 cm. A good correlation was verified between DB´s detected by GPR and those observed in surface, the latter identified using conventional structural methods. After some adaptations in the minipermeameter in order to increase measurement precision, two approaches to measure permeabilities were tested: in situ and in collected cores. The former approach provided better results than the latter and consisted of scratching the outcrop surface, followed by direct measurements on outcrop rocks. The measured permeability profiles allowed to characterize the spatial transition from DB´s to undeformed rock; variation of up to three orders of magnitude were detected. The permeability profiles also presented quasi-periodic patterns, associated with textural and granulometric changes, possibly associated to depositional cycles. Integrated interpretation of the geological, geophysical and core data, provided the subsurface identification of an increase in the DB´s number associated with a sedimentary layer presenting granulometric decrease at depths greater than 8 m. An associated sharp decrease in permeability was also measured in cores from boreholes. The obtained results reveal that radagrams, besides providing high resolution images, allowing the detection of small structures (> 10 cm), also presented a correlation with the permeability data. In this way, GPR data may be used to build upscaling laws, bridging the gap between outcrop and seismic data sets, which may result in better models for faulted reservoirs