3 resultados para Cyclone Tracy
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Nowadays, Brazil has both the greatest goat herd and the greatest goat milk production of South America. The state of Rio Grande do Norte, located in northeast of Brazil, has an average year production of three thousand cubic meters of goat milk in natura. Part of this milk production is homemade and it comes from small farms, which unite in rural cooperatives created to encourage the production and implementation of industrial processes for preservation and processing of milk. Results presented by literature and obtained from preliminary essays in this thesis show that non conventional dryer of spouted bed with inert particles is able to produce powder milk from in natura milk (cattle or goat), with the same quality of spray dryer, however, operating at low cost. The method of drying in spouted bed consists of injecting milk emulsion on the bed of inert particles gushed by hot air. This emulsion covers the particles with a thin film, which dries and is reduced to powder during the circulation of inerts inside the bed. The powder is dragged by exhaustion air and separated in the cyclone. The friction among particles resulted from the particles circulation, encourages high taxes of shear in the thin film of emulsion, breaking the cohesive forces and making this process possible. Studying the drying process and the powder goat milk production in one unit of spouted bed with inert particles, seeing the development of a low cost technological route for powder milk production is the aim of this thesis. The powder milk produced by this route must attend the local demand of food industries which need an intermediate product to be used as a food ingredient (ice-cream, milk candy). In order to reach this aim, this thesis approaches the aspects related to physical, thermodynamics and physic-chemicals characteristics of goat milk, whose complete data are still inexistent in the literature. The properties of materials are of great importance to the project of any process which involves the operations of transportation of movement, heat and mass quantity, such as the dryers which operate in fluid dynamically active regime, like the spouted bed. It was obtained new data related to the goat milk properties in function of concentration of solids and temperature. It is also important to mention the study developed about the kinetic of solids retention in the bed of inert particles during the drying of goat milk. It was found more adequate processes conditions to the proposed technological route to be implemented in small and micro-industries, with simplifications in the system of milk injection as well as in the form of operation of the dryer. Important data were obtained for a posterior stage of this research which involves the v modeling, simulation, control and optimization of the process. The results obtained in this thesis, in relation to process performance as well as to the quality of produced powder milk validate the proposal of using the spouted bed dryer in the production of powder goat milk
Resumo:
The present work has as objective the knowledge of the process of drying of the cephalothorax of shrimp to give support the industry to make possible the use of this byproduct. In this sense, the process conditions in this tray dryer and spouted bed were analyzed. With these results, it was projected and constructs a dryer with specific characteristics for the drying of the cephalothorax. The desorption isotherms were obtained by the dynamic method in the temperatures of 20, 35 and 50º C and in the interval of 10-90% of relative humidity. It was observed that the product in form of powder can be conserved with larger stability for lower relative humidity to 40%. The curves of drying of the dryer of fixed bed were adjusted for the models: single exponential, biparametric exponential and Page. The model biparametric exponential more adequately described all the drying conditions studied. The tests carry out in spouted bed showed high drying rate for the material in the paste form in beds active dynamicly-fluid, provely the necessity of a feeding in shorter intervals of time to increase the thermal efficiency of the process. The projected dryer, be considered the obtained results, it was a rotary dryer with inert bed, feed co-current, discharge in cyclone to take place the separation gas-solid, and feed carry out in intervals of 2 minutes. The optimization of the equipment projected it was accomplished used the complete factorial experimental design 24, this had as independent variables temperature velocity of the air, feed flow rate and encapsulated concentration (albumin), as variables answers the thermal efficiency, the moisture content of obtained powder, total time of test and the efficiency of production of powder in several points of processing. The results showed that the rotary dryer with inert bed can present, also, good results if applied industrially
Resumo:
Os sensores inteligentes são dispositivos que se diferenciam dos sensores comuns por apresentar capacidade de processamento sobre os dados monitorados. Eles tipicamente são compostos por uma fonte de alimentação, transdutores (sensores e atuadores), memória, processador e transceptor. De acordo com o padrão IEEE 1451 um sensor inteligente pode ser dividido em módulos TIM e NCAP que devem se comunicar através de uma interface padronizada chamada TII. O módulo NCAP é a parte do sensor inteligente que comporta o processador. Portanto, ele é o responsável por atribuir a característica de inteligência ao sensor. Existem várias abordagens que podem ser utilizadas para o desenvolvimento desse módulo, dentre elas se destacam aquelas que utilizam microcontroladores de baixo custo e/ou FPGA. Este trabalho aborda o desenvolvimento de uma arquitetura hardware/software para um módulo NCAP segundo o padrão IEEE 1451.1. A infra-estrutura de hardware é composta por um driver de interface RS-232, uma memória RAM de 512kB, uma interface TII, o processador embarcado NIOS II e um simulador do módulo TIM. Para integração dos componentes de hardware é utilizada ferramenta de integração automática SOPC Builder. A infra-estrutura de software é composta pelo padrão IEEE 1451.1 e pela aplicação especí ca do NCAP que simula o monitoramento de pressão e temperatura em poços de petróleo com o objetivo de detectar vazamento. O módulo proposto é embarcado em uma FPGA e para a sua prototipação é usada a placa DE2 da Altera que contém a FPGA Cyclone II EP2C35F672C6. O processador embarcado NIOS II é utilizado para dar suporte à infra-estrutura de software do NCAP que é desenvolvido na linguagem C e se baseia no padrão IEEE 1451.1. A descrição do comportamento da infra-estrutura de hardware é feita utilizando a linguagem VHDL