2 resultados para Cortical plasticity

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present work, we investigated behavioral changes associated with the increase in Zif268 protein expression within telencephalic areas of the tropical lizard Tropidurus hispidus that correspond to the mammalian hippocampus (HC). We used 13 male individuals of this species, collected at the Federal Agrotechnical School of Rio Grande do Norte, under SISBIO license number 19561-1. Four animals had their brains removed and were submitted to a Western blot with antibodies for the Zif268 protein. The remaining animals were separated in two different groups: a control group (n=4) and an exploration group (n=5). Animals from the exploration group were exposed to an enriched environment with many sensory cues novel to them. Control group animals stayed in the environment they were already habituated to. After 90 min from the onset of exposure to the new environment, animals from both groups were submitted to intracardiac perfusion with fixative, and the brains were removed, cryoprotected and frozen. After that, brains were sectioned at 20 μm and the sections were subjected to immunohistochemistry for the Zif268 protein. We verified that the Zif268 protein is likely conserved in the brain of T. hispidus, which showed antigenicity for the antibody anti-Zif268 made in mammals. In animals from the exploration group, we detected an increase of the Zif268 protein in the Septum, Striatum, Dorsoventricular Area and in cortical areas corresponding to the HC. This increase was proportional to the amount of environmental exploration, with maximum positive correlation in the hippocampal subareas Medial Cortex (R = 0.94 and p = 0.004) and Dorsomedial Cortex (R = 0.92 and p = 0.006). The data corroborate the notion that the reptilian hippocampus, as well as the mammalian HC, plays an important role in spatial exploration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sleep is beneficial to learning, but the underlying mechanisms remain controversial. The synaptic homeostasis hypothesis (SHY) proposes that the cognitive function of sleep is related to a generalized rescaling of synaptic weights to intermediate levels, due to a passive downregulation of plasticity mechanisms. A competing hypothesis proposes that the active upscaling and downscaling of synaptic weights during sleep embosses memories in circuits respectively activated or deactivated during prior waking experience, leading to memory changes beyond rescaling. Both theories have empirical support but the experimental designs underlying the conflicting studies are not congruent, therefore a consensus is yet to be reached. To advance this issue, we used real-time PCR and electrophysiological recordings to assess gene expression related to synaptic plasticity in the hippocampus and primary somatosensory cortex of rats exposed to novel objects, then kept awake (WK) for 60 min and finally killed after a 30 min period rich in WK, slow-wave sleep (SWS) or rapid-eye-movement sleep (REM). Animals similarly treated but not exposed to novel objects were used as controls. We found that the mRNA levels of Arc, Egr1, Fos, Ppp2ca and Ppp2r2d were significantly increased in the hippocampus of exposed animals allowed to enter REM, in comparison with control animals. Experience-dependent changes during sleep were not significant in the hippocampus for Bdnf, Camk4, Creb1, and Nr4a1, and no differences were detected between exposed and control SWS groups for any of the genes tested. No significant changes in gene expression were detected in the primary somatosensory cortex during sleep, in contrast with previous studies using longer post-stimulation intervals (>180 min). The experience-dependent induction of multiple plasticity-related genes in the hippocampus during early REM adds experimental support to the synaptic embossing theory.